Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms
The accurate diagnosis of schizophrenia spectrum disorder plays an important role in improving patient outcomes, enabling timely interventions, and optimizing treatment plans. Functional connectivity analysis, utilizing functional magnetic resonance imaging data, has been demonstrated to offer inval...
Gespeichert in:
Veröffentlicht in: | Computer methods and programs in biomedicine 2024-12, Vol.257, p.108419, Article 108419 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 108419 |
container_title | Computer methods and programs in biomedicine |
container_volume | 257 |
creator | Wang, Shurun Tang, Hao Himeno, Ryutaro Solé-Casals, Jordi Caiafa, Cesar F. Han, Shuning Aoki, Shigeki Sun, Zhe |
description | The accurate diagnosis of schizophrenia spectrum disorder plays an important role in improving patient outcomes, enabling timely interventions, and optimizing treatment plans. Functional connectivity analysis, utilizing functional magnetic resonance imaging data, has been demonstrated to offer invaluable biomarkers conducive to clinical diagnosis. However, previous studies mainly focus on traditional machine learning methods or hand-crafted neural networks, which may not fully capture the spatial topological relationship between brain regions.
This paper proposes an evolutionary algorithm (EA) based graph neural architecture search (GNAS) method. EA-GNAS has the ability to search for high-performance graph neural networks for schizophrenia spectrum disorder prediction. Moreover, we adopt GNNExplainer to investigate the explainability of the acquired architectures, ensuring that the model’s predictions are both accurate and comprehensible.
The results suggest that the graph neural network model, derived using genetic algorithm search, outperforms under five-fold cross-validation, achieving a fitness of 0.1850. Relative to conventional machine learning and other deep learning approaches, the proposed method yields superior accuracy, F1 score, and AUC values of 0.8246, 0.8438, and 0.8258, respectively.
Based on a multi-site dataset from schizophrenia spectrum disorder patients, the findings reveal an enhancement over prior methods, advancing our comprehension of brain function and potentially offering a biomarker for diagnosing schizophrenia spectrum disorder.
•We propose a GNAS framework to build GNN model for disorder prediction.•We compare our model with other popular ML and DL models on multi-site datasets.•We use the GNNExplainer method to provide the explainability of the model.•The explainability results provide valuable insights for diagnosis and treatment.•The source code is available on GitHub at https://github.com/Shurun-Wang/EA-GNAS. |
doi_str_mv | 10.1016/j.cmpb.2024.108419 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3106732083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169260724004127</els_id><sourcerecordid>3106732083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-17cde78c782687f37d40e2a7409c36b87b35031ec167fedac0fd1a50eecfe22e3</originalsourceid><addsrcrecordid>eNp9kD1v2zAQhokiRe26_QMdAo5Z5PLDEiUgS2CkbQADXtqZoMmTTVcSlaPkoP71oWAnY6fD3T33gnwI-cbZkjNefD8ubdvvloKJVRqUK159IHNeKpGpvMhvyDxBVSYKpmbkc4xHxpjI8-ITmclKVFJIPifnbT_41p99t6d7NP2BdjCiaVIZXgL-pQbtwQ9ghxEh0jogjWlwDv0BofOGxj7tcGyp8zGgA6Q9gvN28KGjY5xy4RSaceoN_qOm2Qf0w6GNX8jH2jQRvl7rgvz58fh7_SvbbH8-rR82mRVSDRlX1oEqrSpFUapaKrdiIIxascrKYleqncyZ5GB5oWpwxrLacZMzAFuDECAX5O6S22N4HiEOuvXRQtOYDsIYteSsUFKwUiZUXFCLIUaEWvfo2_RszZmenOujnpzrybm-OE9Ht9f8cdeCez95k5yA-wsA6ZcnD6ij9dDZpAmTPO2C_1_-K0BJlyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106732083</pqid></control><display><type>article</type><title>Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Shurun ; Tang, Hao ; Himeno, Ryutaro ; Solé-Casals, Jordi ; Caiafa, Cesar F. ; Han, Shuning ; Aoki, Shigeki ; Sun, Zhe</creator><creatorcontrib>Wang, Shurun ; Tang, Hao ; Himeno, Ryutaro ; Solé-Casals, Jordi ; Caiafa, Cesar F. ; Han, Shuning ; Aoki, Shigeki ; Sun, Zhe</creatorcontrib><description>The accurate diagnosis of schizophrenia spectrum disorder plays an important role in improving patient outcomes, enabling timely interventions, and optimizing treatment plans. Functional connectivity analysis, utilizing functional magnetic resonance imaging data, has been demonstrated to offer invaluable biomarkers conducive to clinical diagnosis. However, previous studies mainly focus on traditional machine learning methods or hand-crafted neural networks, which may not fully capture the spatial topological relationship between brain regions.
This paper proposes an evolutionary algorithm (EA) based graph neural architecture search (GNAS) method. EA-GNAS has the ability to search for high-performance graph neural networks for schizophrenia spectrum disorder prediction. Moreover, we adopt GNNExplainer to investigate the explainability of the acquired architectures, ensuring that the model’s predictions are both accurate and comprehensible.
The results suggest that the graph neural network model, derived using genetic algorithm search, outperforms under five-fold cross-validation, achieving a fitness of 0.1850. Relative to conventional machine learning and other deep learning approaches, the proposed method yields superior accuracy, F1 score, and AUC values of 0.8246, 0.8438, and 0.8258, respectively.
Based on a multi-site dataset from schizophrenia spectrum disorder patients, the findings reveal an enhancement over prior methods, advancing our comprehension of brain function and potentially offering a biomarker for diagnosing schizophrenia spectrum disorder.
•We propose a GNAS framework to build GNN model for disorder prediction.•We compare our model with other popular ML and DL models on multi-site datasets.•We use the GNNExplainer method to provide the explainability of the model.•The explainability results provide valuable insights for diagnosis and treatment.•The source code is available on GitHub at https://github.com/Shurun-Wang/EA-GNAS.</description><identifier>ISSN: 0169-2607</identifier><identifier>ISSN: 1872-7565</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/j.cmpb.2024.108419</identifier><identifier>PMID: 39293231</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Adult ; Algorithms ; Brain - diagnostic imaging ; Brain - physiopathology ; Brain functional connectivity ; Deep Learning ; Evolutionary algorithm ; Female ; Graph neural architecture search ; Graph neural network ; Humans ; Machine Learning ; Magnetic Resonance Imaging - methods ; Male ; Neural Networks, Computer ; Schizophrenia - diagnosis ; Schizophrenia - diagnostic imaging ; Schizophrenia - physiopathology ; Schizophrenia spectrum disorder</subject><ispartof>Computer methods and programs in biomedicine, 2024-12, Vol.257, p.108419, Article 108419</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c237t-17cde78c782687f37d40e2a7409c36b87b35031ec167fedac0fd1a50eecfe22e3</cites><orcidid>0000-0001-5437-6095 ; 0000-0002-6531-0769 ; 0000-0001-7611-5718 ; 0000-0002-6534-1979 ; 0000-0003-3378-6989 ; 0009-0004-0792-5484</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cmpb.2024.108419$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39293231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shurun</creatorcontrib><creatorcontrib>Tang, Hao</creatorcontrib><creatorcontrib>Himeno, Ryutaro</creatorcontrib><creatorcontrib>Solé-Casals, Jordi</creatorcontrib><creatorcontrib>Caiafa, Cesar F.</creatorcontrib><creatorcontrib>Han, Shuning</creatorcontrib><creatorcontrib>Aoki, Shigeki</creatorcontrib><creatorcontrib>Sun, Zhe</creatorcontrib><title>Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>The accurate diagnosis of schizophrenia spectrum disorder plays an important role in improving patient outcomes, enabling timely interventions, and optimizing treatment plans. Functional connectivity analysis, utilizing functional magnetic resonance imaging data, has been demonstrated to offer invaluable biomarkers conducive to clinical diagnosis. However, previous studies mainly focus on traditional machine learning methods or hand-crafted neural networks, which may not fully capture the spatial topological relationship between brain regions.
This paper proposes an evolutionary algorithm (EA) based graph neural architecture search (GNAS) method. EA-GNAS has the ability to search for high-performance graph neural networks for schizophrenia spectrum disorder prediction. Moreover, we adopt GNNExplainer to investigate the explainability of the acquired architectures, ensuring that the model’s predictions are both accurate and comprehensible.
The results suggest that the graph neural network model, derived using genetic algorithm search, outperforms under five-fold cross-validation, achieving a fitness of 0.1850. Relative to conventional machine learning and other deep learning approaches, the proposed method yields superior accuracy, F1 score, and AUC values of 0.8246, 0.8438, and 0.8258, respectively.
Based on a multi-site dataset from schizophrenia spectrum disorder patients, the findings reveal an enhancement over prior methods, advancing our comprehension of brain function and potentially offering a biomarker for diagnosing schizophrenia spectrum disorder.
•We propose a GNAS framework to build GNN model for disorder prediction.•We compare our model with other popular ML and DL models on multi-site datasets.•We use the GNNExplainer method to provide the explainability of the model.•The explainability results provide valuable insights for diagnosis and treatment.•The source code is available on GitHub at https://github.com/Shurun-Wang/EA-GNAS.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - physiopathology</subject><subject>Brain functional connectivity</subject><subject>Deep Learning</subject><subject>Evolutionary algorithm</subject><subject>Female</subject><subject>Graph neural architecture search</subject><subject>Graph neural network</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Neural Networks, Computer</subject><subject>Schizophrenia - diagnosis</subject><subject>Schizophrenia - diagnostic imaging</subject><subject>Schizophrenia - physiopathology</subject><subject>Schizophrenia spectrum disorder</subject><issn>0169-2607</issn><issn>1872-7565</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1v2zAQhokiRe26_QMdAo5Z5PLDEiUgS2CkbQADXtqZoMmTTVcSlaPkoP71oWAnY6fD3T33gnwI-cbZkjNefD8ubdvvloKJVRqUK159IHNeKpGpvMhvyDxBVSYKpmbkc4xHxpjI8-ITmclKVFJIPifnbT_41p99t6d7NP2BdjCiaVIZXgL-pQbtwQ9ghxEh0jogjWlwDv0BofOGxj7tcGyp8zGgA6Q9gvN28KGjY5xy4RSaceoN_qOm2Qf0w6GNX8jH2jQRvl7rgvz58fh7_SvbbH8-rR82mRVSDRlX1oEqrSpFUapaKrdiIIxascrKYleqncyZ5GB5oWpwxrLacZMzAFuDECAX5O6S22N4HiEOuvXRQtOYDsIYteSsUFKwUiZUXFCLIUaEWvfo2_RszZmenOujnpzrybm-OE9Ht9f8cdeCez95k5yA-wsA6ZcnD6ij9dDZpAmTPO2C_1_-K0BJlyo</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Wang, Shurun</creator><creator>Tang, Hao</creator><creator>Himeno, Ryutaro</creator><creator>Solé-Casals, Jordi</creator><creator>Caiafa, Cesar F.</creator><creator>Han, Shuning</creator><creator>Aoki, Shigeki</creator><creator>Sun, Zhe</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5437-6095</orcidid><orcidid>https://orcid.org/0000-0002-6531-0769</orcidid><orcidid>https://orcid.org/0000-0001-7611-5718</orcidid><orcidid>https://orcid.org/0000-0002-6534-1979</orcidid><orcidid>https://orcid.org/0000-0003-3378-6989</orcidid><orcidid>https://orcid.org/0009-0004-0792-5484</orcidid></search><sort><creationdate>202412</creationdate><title>Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms</title><author>Wang, Shurun ; Tang, Hao ; Himeno, Ryutaro ; Solé-Casals, Jordi ; Caiafa, Cesar F. ; Han, Shuning ; Aoki, Shigeki ; Sun, Zhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-17cde78c782687f37d40e2a7409c36b87b35031ec167fedac0fd1a50eecfe22e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - physiopathology</topic><topic>Brain functional connectivity</topic><topic>Deep Learning</topic><topic>Evolutionary algorithm</topic><topic>Female</topic><topic>Graph neural architecture search</topic><topic>Graph neural network</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Neural Networks, Computer</topic><topic>Schizophrenia - diagnosis</topic><topic>Schizophrenia - diagnostic imaging</topic><topic>Schizophrenia - physiopathology</topic><topic>Schizophrenia spectrum disorder</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shurun</creatorcontrib><creatorcontrib>Tang, Hao</creatorcontrib><creatorcontrib>Himeno, Ryutaro</creatorcontrib><creatorcontrib>Solé-Casals, Jordi</creatorcontrib><creatorcontrib>Caiafa, Cesar F.</creatorcontrib><creatorcontrib>Han, Shuning</creatorcontrib><creatorcontrib>Aoki, Shigeki</creatorcontrib><creatorcontrib>Sun, Zhe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shurun</au><au>Tang, Hao</au><au>Himeno, Ryutaro</au><au>Solé-Casals, Jordi</au><au>Caiafa, Cesar F.</au><au>Han, Shuning</au><au>Aoki, Shigeki</au><au>Sun, Zhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>2024-12</date><risdate>2024</risdate><volume>257</volume><spage>108419</spage><pages>108419-</pages><artnum>108419</artnum><issn>0169-2607</issn><issn>1872-7565</issn><eissn>1872-7565</eissn><abstract>The accurate diagnosis of schizophrenia spectrum disorder plays an important role in improving patient outcomes, enabling timely interventions, and optimizing treatment plans. Functional connectivity analysis, utilizing functional magnetic resonance imaging data, has been demonstrated to offer invaluable biomarkers conducive to clinical diagnosis. However, previous studies mainly focus on traditional machine learning methods or hand-crafted neural networks, which may not fully capture the spatial topological relationship between brain regions.
This paper proposes an evolutionary algorithm (EA) based graph neural architecture search (GNAS) method. EA-GNAS has the ability to search for high-performance graph neural networks for schizophrenia spectrum disorder prediction. Moreover, we adopt GNNExplainer to investigate the explainability of the acquired architectures, ensuring that the model’s predictions are both accurate and comprehensible.
The results suggest that the graph neural network model, derived using genetic algorithm search, outperforms under five-fold cross-validation, achieving a fitness of 0.1850. Relative to conventional machine learning and other deep learning approaches, the proposed method yields superior accuracy, F1 score, and AUC values of 0.8246, 0.8438, and 0.8258, respectively.
Based on a multi-site dataset from schizophrenia spectrum disorder patients, the findings reveal an enhancement over prior methods, advancing our comprehension of brain function and potentially offering a biomarker for diagnosing schizophrenia spectrum disorder.
•We propose a GNAS framework to build GNN model for disorder prediction.•We compare our model with other popular ML and DL models on multi-site datasets.•We use the GNNExplainer method to provide the explainability of the model.•The explainability results provide valuable insights for diagnosis and treatment.•The source code is available on GitHub at https://github.com/Shurun-Wang/EA-GNAS.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>39293231</pmid><doi>10.1016/j.cmpb.2024.108419</doi><orcidid>https://orcid.org/0000-0001-5437-6095</orcidid><orcidid>https://orcid.org/0000-0002-6531-0769</orcidid><orcidid>https://orcid.org/0000-0001-7611-5718</orcidid><orcidid>https://orcid.org/0000-0002-6534-1979</orcidid><orcidid>https://orcid.org/0000-0003-3378-6989</orcidid><orcidid>https://orcid.org/0009-0004-0792-5484</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-2607 |
ispartof | Computer methods and programs in biomedicine, 2024-12, Vol.257, p.108419, Article 108419 |
issn | 0169-2607 1872-7565 1872-7565 |
language | eng |
recordid | cdi_proquest_miscellaneous_3106732083 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Adult Algorithms Brain - diagnostic imaging Brain - physiopathology Brain functional connectivity Deep Learning Evolutionary algorithm Female Graph neural architecture search Graph neural network Humans Machine Learning Magnetic Resonance Imaging - methods Male Neural Networks, Computer Schizophrenia - diagnosis Schizophrenia - diagnostic imaging Schizophrenia - physiopathology Schizophrenia spectrum disorder |
title | Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A04%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20graph%20neural%20network%20architectures%20for%20schizophrenia%20spectrum%20disorder%20prediction%20using%20evolutionary%20algorithms&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=Wang,%20Shurun&rft.date=2024-12&rft.volume=257&rft.spage=108419&rft.pages=108419-&rft.artnum=108419&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/j.cmpb.2024.108419&rft_dat=%3Cproquest_cross%3E3106732083%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106732083&rft_id=info:pmid/39293231&rft_els_id=S0169260724004127&rfr_iscdi=true |