Physiological control for left ventricular assist devices based on deep reinforcement learning
Background The improvement of controllers of left ventricular assist device (LVAD) technology supporting heart failure (HF) patients has enormous impact, given the high prevalence and mortality of HF in the population. The use of reinforcement learning for control applications in LVAD remains minima...
Gespeichert in:
Veröffentlicht in: | Artificial organs 2024-12, Vol.48 (12), p.1418-1429 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1429 |
---|---|
container_issue | 12 |
container_start_page | 1418 |
container_title | Artificial organs |
container_volume | 48 |
creator | Fernández‐Zapico, Diego Peirelinck, Thijs Deconinck, Geert Donker, Dirk W. Fresiello, Libera |
description | Background
The improvement of controllers of left ventricular assist device (LVAD) technology supporting heart failure (HF) patients has enormous impact, given the high prevalence and mortality of HF in the population. The use of reinforcement learning for control applications in LVAD remains minimally explored. This work introduces a preload‐based deep reinforcement learning control for LVAD based on the proximal policy optimization algorithm.
Methods
The deep reinforcement learning control is built upon data derived from a deterministic high‐fidelity cardiorespiratory simulator exposed to variations of total blood volume, heart rate, systemic vascular resistance, pulmonary vascular resistance, right ventricular end‐systolic elastance, and left ventricular end‐systolic elastance, to replicate realistic inter‐ and intra‐patient variability of patients with a severe HF supported by LVAD. The deep reinforcement learning control obtained in this work is trained to avoid ventricular suction and allow aortic valve opening by using left ventricular pressure signals: end‐diastolic pressure, maximum pressure in the left ventricle (LV), and maximum pressure in the aorta.
Results
The results show controller obtained in this work, compared to the constant speed LVAD alternative, assures a more stable end‐diastolic volume (EDV), with a standard deviation of 5 mL and 9 mL, respectively, and a higher degree of aortic flow, with an average flow of 1.1 L/min and 0.9 L/min, respectively.
Conclusion
This work implements a deep reinforcement learning controller in a high‐fidelity cardiorespiratory simulator, resulting in increases of flow through the aortic valve and increases of EDV stability, when compared to a constant speed LVAD strategy.
This work focuses on a left ventricular assist device control, based on deep reinforcement learning trained with the goal to prevent suction and promote aortic valve opening. The control is built upon data derived from a deterministic high fidelity cardiorespiratory simulator recreating different (patho)physiological conditions. Results show that the control assures adequate perfusion to end organs, increases flow through the aortic valve and promotes end diastolic left ventricular volume stability, when compared to a constant LVAD speed strategy. |
doi_str_mv | 10.1111/aor.14845 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3106462982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126866860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2435-12d3fbfdac81a91316d6c583d924e6bbd452a4dcda41626e02ec6b7d0b08a7b83</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMotlYPfgEJeNFD2ySbTbPHUvwHQkUUPLlkk9makm5q0q302xtt9SA4DAwMv_d4PIROKRnQNEPlw4ByyfM91KU5y_s0L_g-6hIqSD8X_KWDjmKcE0JGnIhD1MkKJguZj7ro9eFtE613fma1clj7ZhW8w7UP2EG9wmtID6tbpwJWMdq4wgbWVkPElYpgsG_SA5Y4gG2SSsMiKZJWhcY2s2N0UCsX4WR3e-j5-uppctu_n97cTcb3fc14lvIyk9VVbZSWVBU0o8IIncvMFIyDqCrDc6a40UZxKpgAwkCLamRIRaQaVTLroYut7zL49xbiqlzYqME51YBvY5lRIrhghWQJPf-Dzn0bmpQuUUxIkZYk6nJL6eBjDFCXy2AXKmxKSsqv0stUevldemLPdo5ttQDzS_60nIDhFviwDjb_O5Xj6ePW8hOjjoyy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126866860</pqid></control><display><type>article</type><title>Physiological control for left ventricular assist devices based on deep reinforcement learning</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fernández‐Zapico, Diego ; Peirelinck, Thijs ; Deconinck, Geert ; Donker, Dirk W. ; Fresiello, Libera</creator><creatorcontrib>Fernández‐Zapico, Diego ; Peirelinck, Thijs ; Deconinck, Geert ; Donker, Dirk W. ; Fresiello, Libera</creatorcontrib><description>Background
The improvement of controllers of left ventricular assist device (LVAD) technology supporting heart failure (HF) patients has enormous impact, given the high prevalence and mortality of HF in the population. The use of reinforcement learning for control applications in LVAD remains minimally explored. This work introduces a preload‐based deep reinforcement learning control for LVAD based on the proximal policy optimization algorithm.
Methods
The deep reinforcement learning control is built upon data derived from a deterministic high‐fidelity cardiorespiratory simulator exposed to variations of total blood volume, heart rate, systemic vascular resistance, pulmonary vascular resistance, right ventricular end‐systolic elastance, and left ventricular end‐systolic elastance, to replicate realistic inter‐ and intra‐patient variability of patients with a severe HF supported by LVAD. The deep reinforcement learning control obtained in this work is trained to avoid ventricular suction and allow aortic valve opening by using left ventricular pressure signals: end‐diastolic pressure, maximum pressure in the left ventricle (LV), and maximum pressure in the aorta.
Results
The results show controller obtained in this work, compared to the constant speed LVAD alternative, assures a more stable end‐diastolic volume (EDV), with a standard deviation of 5 mL and 9 mL, respectively, and a higher degree of aortic flow, with an average flow of 1.1 L/min and 0.9 L/min, respectively.
Conclusion
This work implements a deep reinforcement learning controller in a high‐fidelity cardiorespiratory simulator, resulting in increases of flow through the aortic valve and increases of EDV stability, when compared to a constant speed LVAD strategy.
This work focuses on a left ventricular assist device control, based on deep reinforcement learning trained with the goal to prevent suction and promote aortic valve opening. The control is built upon data derived from a deterministic high fidelity cardiorespiratory simulator recreating different (patho)physiological conditions. Results show that the control assures adequate perfusion to end organs, increases flow through the aortic valve and promotes end diastolic left ventricular volume stability, when compared to a constant LVAD speed strategy.</description><identifier>ISSN: 0160-564X</identifier><identifier>ISSN: 1525-1594</identifier><identifier>EISSN: 1525-1594</identifier><identifier>DOI: 10.1111/aor.14845</identifier><identifier>PMID: 39289857</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Aorta ; Aortic valve ; Blood pressure ; Blood volume ; cardiorespiratory simulator ; Computer Simulation ; Congestive heart failure ; Control valves ; Controllers ; Deep Learning ; deep reinforcement learning ; Diastolic pressure ; heart failure ; Heart Failure - physiopathology ; Heart Failure - surgery ; Heart Failure - therapy ; Heart rate ; Heart valves ; Heart-Assist Devices ; Hemodynamics ; Humans ; Learning ; left ventricular assist device ; Machine learning ; Models, Cardiovascular ; physiological control ; Reinforcement ; Simulator fidelity ; Suction ; Ventricle ; Ventricular assist devices ; Ventricular Function, Left - physiology</subject><ispartof>Artificial organs, 2024-12, Vol.48 (12), p.1418-1429</ispartof><rights>2024 International Center for Artificial Organ and Transplantation (ICAOT) and Wiley Periodicals LLC.</rights><rights>Copyright © 2024 International Center for Artificial Organs and Transplantation and Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2435-12d3fbfdac81a91316d6c583d924e6bbd452a4dcda41626e02ec6b7d0b08a7b83</cites><orcidid>0000-0002-2225-3987 ; 0009-0004-7883-4221 ; 0000-0002-1080-8164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Faor.14845$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Faor.14845$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39289857$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernández‐Zapico, Diego</creatorcontrib><creatorcontrib>Peirelinck, Thijs</creatorcontrib><creatorcontrib>Deconinck, Geert</creatorcontrib><creatorcontrib>Donker, Dirk W.</creatorcontrib><creatorcontrib>Fresiello, Libera</creatorcontrib><title>Physiological control for left ventricular assist devices based on deep reinforcement learning</title><title>Artificial organs</title><addtitle>Artif Organs</addtitle><description>Background
The improvement of controllers of left ventricular assist device (LVAD) technology supporting heart failure (HF) patients has enormous impact, given the high prevalence and mortality of HF in the population. The use of reinforcement learning for control applications in LVAD remains minimally explored. This work introduces a preload‐based deep reinforcement learning control for LVAD based on the proximal policy optimization algorithm.
Methods
The deep reinforcement learning control is built upon data derived from a deterministic high‐fidelity cardiorespiratory simulator exposed to variations of total blood volume, heart rate, systemic vascular resistance, pulmonary vascular resistance, right ventricular end‐systolic elastance, and left ventricular end‐systolic elastance, to replicate realistic inter‐ and intra‐patient variability of patients with a severe HF supported by LVAD. The deep reinforcement learning control obtained in this work is trained to avoid ventricular suction and allow aortic valve opening by using left ventricular pressure signals: end‐diastolic pressure, maximum pressure in the left ventricle (LV), and maximum pressure in the aorta.
Results
The results show controller obtained in this work, compared to the constant speed LVAD alternative, assures a more stable end‐diastolic volume (EDV), with a standard deviation of 5 mL and 9 mL, respectively, and a higher degree of aortic flow, with an average flow of 1.1 L/min and 0.9 L/min, respectively.
Conclusion
This work implements a deep reinforcement learning controller in a high‐fidelity cardiorespiratory simulator, resulting in increases of flow through the aortic valve and increases of EDV stability, when compared to a constant speed LVAD strategy.
This work focuses on a left ventricular assist device control, based on deep reinforcement learning trained with the goal to prevent suction and promote aortic valve opening. The control is built upon data derived from a deterministic high fidelity cardiorespiratory simulator recreating different (patho)physiological conditions. Results show that the control assures adequate perfusion to end organs, increases flow through the aortic valve and promotes end diastolic left ventricular volume stability, when compared to a constant LVAD speed strategy.</description><subject>Algorithms</subject><subject>Aorta</subject><subject>Aortic valve</subject><subject>Blood pressure</subject><subject>Blood volume</subject><subject>cardiorespiratory simulator</subject><subject>Computer Simulation</subject><subject>Congestive heart failure</subject><subject>Control valves</subject><subject>Controllers</subject><subject>Deep Learning</subject><subject>deep reinforcement learning</subject><subject>Diastolic pressure</subject><subject>heart failure</subject><subject>Heart Failure - physiopathology</subject><subject>Heart Failure - surgery</subject><subject>Heart Failure - therapy</subject><subject>Heart rate</subject><subject>Heart valves</subject><subject>Heart-Assist Devices</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Learning</subject><subject>left ventricular assist device</subject><subject>Machine learning</subject><subject>Models, Cardiovascular</subject><subject>physiological control</subject><subject>Reinforcement</subject><subject>Simulator fidelity</subject><subject>Suction</subject><subject>Ventricle</subject><subject>Ventricular assist devices</subject><subject>Ventricular Function, Left - physiology</subject><issn>0160-564X</issn><issn>1525-1594</issn><issn>1525-1594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE9LAzEQxYMotlYPfgEJeNFD2ySbTbPHUvwHQkUUPLlkk9makm5q0q302xtt9SA4DAwMv_d4PIROKRnQNEPlw4ByyfM91KU5y_s0L_g-6hIqSD8X_KWDjmKcE0JGnIhD1MkKJguZj7ro9eFtE613fma1clj7ZhW8w7UP2EG9wmtID6tbpwJWMdq4wgbWVkPElYpgsG_SA5Y4gG2SSsMiKZJWhcY2s2N0UCsX4WR3e-j5-uppctu_n97cTcb3fc14lvIyk9VVbZSWVBU0o8IIncvMFIyDqCrDc6a40UZxKpgAwkCLamRIRaQaVTLroYut7zL49xbiqlzYqME51YBvY5lRIrhghWQJPf-Dzn0bmpQuUUxIkZYk6nJL6eBjDFCXy2AXKmxKSsqv0stUevldemLPdo5ttQDzS_60nIDhFviwDjb_O5Xj6ePW8hOjjoyy</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Fernández‐Zapico, Diego</creator><creator>Peirelinck, Thijs</creator><creator>Deconinck, Geert</creator><creator>Donker, Dirk W.</creator><creator>Fresiello, Libera</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2225-3987</orcidid><orcidid>https://orcid.org/0009-0004-7883-4221</orcidid><orcidid>https://orcid.org/0000-0002-1080-8164</orcidid></search><sort><creationdate>202412</creationdate><title>Physiological control for left ventricular assist devices based on deep reinforcement learning</title><author>Fernández‐Zapico, Diego ; Peirelinck, Thijs ; Deconinck, Geert ; Donker, Dirk W. ; Fresiello, Libera</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2435-12d3fbfdac81a91316d6c583d924e6bbd452a4dcda41626e02ec6b7d0b08a7b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Aorta</topic><topic>Aortic valve</topic><topic>Blood pressure</topic><topic>Blood volume</topic><topic>cardiorespiratory simulator</topic><topic>Computer Simulation</topic><topic>Congestive heart failure</topic><topic>Control valves</topic><topic>Controllers</topic><topic>Deep Learning</topic><topic>deep reinforcement learning</topic><topic>Diastolic pressure</topic><topic>heart failure</topic><topic>Heart Failure - physiopathology</topic><topic>Heart Failure - surgery</topic><topic>Heart Failure - therapy</topic><topic>Heart rate</topic><topic>Heart valves</topic><topic>Heart-Assist Devices</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Learning</topic><topic>left ventricular assist device</topic><topic>Machine learning</topic><topic>Models, Cardiovascular</topic><topic>physiological control</topic><topic>Reinforcement</topic><topic>Simulator fidelity</topic><topic>Suction</topic><topic>Ventricle</topic><topic>Ventricular assist devices</topic><topic>Ventricular Function, Left - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernández‐Zapico, Diego</creatorcontrib><creatorcontrib>Peirelinck, Thijs</creatorcontrib><creatorcontrib>Deconinck, Geert</creatorcontrib><creatorcontrib>Donker, Dirk W.</creatorcontrib><creatorcontrib>Fresiello, Libera</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial organs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernández‐Zapico, Diego</au><au>Peirelinck, Thijs</au><au>Deconinck, Geert</au><au>Donker, Dirk W.</au><au>Fresiello, Libera</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physiological control for left ventricular assist devices based on deep reinforcement learning</atitle><jtitle>Artificial organs</jtitle><addtitle>Artif Organs</addtitle><date>2024-12</date><risdate>2024</risdate><volume>48</volume><issue>12</issue><spage>1418</spage><epage>1429</epage><pages>1418-1429</pages><issn>0160-564X</issn><issn>1525-1594</issn><eissn>1525-1594</eissn><abstract>Background
The improvement of controllers of left ventricular assist device (LVAD) technology supporting heart failure (HF) patients has enormous impact, given the high prevalence and mortality of HF in the population. The use of reinforcement learning for control applications in LVAD remains minimally explored. This work introduces a preload‐based deep reinforcement learning control for LVAD based on the proximal policy optimization algorithm.
Methods
The deep reinforcement learning control is built upon data derived from a deterministic high‐fidelity cardiorespiratory simulator exposed to variations of total blood volume, heart rate, systemic vascular resistance, pulmonary vascular resistance, right ventricular end‐systolic elastance, and left ventricular end‐systolic elastance, to replicate realistic inter‐ and intra‐patient variability of patients with a severe HF supported by LVAD. The deep reinforcement learning control obtained in this work is trained to avoid ventricular suction and allow aortic valve opening by using left ventricular pressure signals: end‐diastolic pressure, maximum pressure in the left ventricle (LV), and maximum pressure in the aorta.
Results
The results show controller obtained in this work, compared to the constant speed LVAD alternative, assures a more stable end‐diastolic volume (EDV), with a standard deviation of 5 mL and 9 mL, respectively, and a higher degree of aortic flow, with an average flow of 1.1 L/min and 0.9 L/min, respectively.
Conclusion
This work implements a deep reinforcement learning controller in a high‐fidelity cardiorespiratory simulator, resulting in increases of flow through the aortic valve and increases of EDV stability, when compared to a constant speed LVAD strategy.
This work focuses on a left ventricular assist device control, based on deep reinforcement learning trained with the goal to prevent suction and promote aortic valve opening. The control is built upon data derived from a deterministic high fidelity cardiorespiratory simulator recreating different (patho)physiological conditions. Results show that the control assures adequate perfusion to end organs, increases flow through the aortic valve and promotes end diastolic left ventricular volume stability, when compared to a constant LVAD speed strategy.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39289857</pmid><doi>10.1111/aor.14845</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2225-3987</orcidid><orcidid>https://orcid.org/0009-0004-7883-4221</orcidid><orcidid>https://orcid.org/0000-0002-1080-8164</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0160-564X |
ispartof | Artificial organs, 2024-12, Vol.48 (12), p.1418-1429 |
issn | 0160-564X 1525-1594 1525-1594 |
language | eng |
recordid | cdi_proquest_miscellaneous_3106462982 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Aorta Aortic valve Blood pressure Blood volume cardiorespiratory simulator Computer Simulation Congestive heart failure Control valves Controllers Deep Learning deep reinforcement learning Diastolic pressure heart failure Heart Failure - physiopathology Heart Failure - surgery Heart Failure - therapy Heart rate Heart valves Heart-Assist Devices Hemodynamics Humans Learning left ventricular assist device Machine learning Models, Cardiovascular physiological control Reinforcement Simulator fidelity Suction Ventricle Ventricular assist devices Ventricular Function, Left - physiology |
title | Physiological control for left ventricular assist devices based on deep reinforcement learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physiological%20control%20for%20left%20ventricular%20assist%20devices%20based%20on%20deep%20reinforcement%20learning&rft.jtitle=Artificial%20organs&rft.au=Fern%C3%A1ndez%E2%80%90Zapico,%20Diego&rft.date=2024-12&rft.volume=48&rft.issue=12&rft.spage=1418&rft.epage=1429&rft.pages=1418-1429&rft.issn=0160-564X&rft.eissn=1525-1594&rft_id=info:doi/10.1111/aor.14845&rft_dat=%3Cproquest_cross%3E3126866860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126866860&rft_id=info:pmid/39289857&rfr_iscdi=true |