Physiological control for left ventricular assist devices based on deep reinforcement learning

Background The improvement of controllers of left ventricular assist device (LVAD) technology supporting heart failure (HF) patients has enormous impact, given the high prevalence and mortality of HF in the population. The use of reinforcement learning for control applications in LVAD remains minima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial organs 2024-12, Vol.48 (12), p.1418-1429
Hauptverfasser: Fernández‐Zapico, Diego, Peirelinck, Thijs, Deconinck, Geert, Donker, Dirk W., Fresiello, Libera
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1429
container_issue 12
container_start_page 1418
container_title Artificial organs
container_volume 48
creator Fernández‐Zapico, Diego
Peirelinck, Thijs
Deconinck, Geert
Donker, Dirk W.
Fresiello, Libera
description Background The improvement of controllers of left ventricular assist device (LVAD) technology supporting heart failure (HF) patients has enormous impact, given the high prevalence and mortality of HF in the population. The use of reinforcement learning for control applications in LVAD remains minimally explored. This work introduces a preload‐based deep reinforcement learning control for LVAD based on the proximal policy optimization algorithm. Methods The deep reinforcement learning control is built upon data derived from a deterministic high‐fidelity cardiorespiratory simulator exposed to variations of total blood volume, heart rate, systemic vascular resistance, pulmonary vascular resistance, right ventricular end‐systolic elastance, and left ventricular end‐systolic elastance, to replicate realistic inter‐ and intra‐patient variability of patients with a severe HF supported by LVAD. The deep reinforcement learning control obtained in this work is trained to avoid ventricular suction and allow aortic valve opening by using left ventricular pressure signals: end‐diastolic pressure, maximum pressure in the left ventricle (LV), and maximum pressure in the aorta. Results The results show controller obtained in this work, compared to the constant speed LVAD alternative, assures a more stable end‐diastolic volume (EDV), with a standard deviation of 5 mL and 9 mL, respectively, and a higher degree of aortic flow, with an average flow of 1.1 L/min and 0.9 L/min, respectively. Conclusion This work implements a deep reinforcement learning controller in a high‐fidelity cardiorespiratory simulator, resulting in increases of flow through the aortic valve and increases of EDV stability, when compared to a constant speed LVAD strategy. This work focuses on a left ventricular assist device control, based on deep reinforcement learning trained with the goal to prevent suction and promote aortic valve opening. The control is built upon data derived from a deterministic high fidelity cardiorespiratory simulator recreating different (patho)physiological conditions. Results show that the control assures adequate perfusion to end organs, increases flow through the aortic valve and promotes end diastolic left ventricular volume stability, when compared to a constant LVAD speed strategy.
doi_str_mv 10.1111/aor.14845
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3106462982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126866860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2435-12d3fbfdac81a91316d6c583d924e6bbd452a4dcda41626e02ec6b7d0b08a7b83</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMotlYPfgEJeNFD2ySbTbPHUvwHQkUUPLlkk9makm5q0q302xtt9SA4DAwMv_d4PIROKRnQNEPlw4ByyfM91KU5y_s0L_g-6hIqSD8X_KWDjmKcE0JGnIhD1MkKJguZj7ro9eFtE613fma1clj7ZhW8w7UP2EG9wmtID6tbpwJWMdq4wgbWVkPElYpgsG_SA5Y4gG2SSsMiKZJWhcY2s2N0UCsX4WR3e-j5-uppctu_n97cTcb3fc14lvIyk9VVbZSWVBU0o8IIncvMFIyDqCrDc6a40UZxKpgAwkCLamRIRaQaVTLroYut7zL49xbiqlzYqME51YBvY5lRIrhghWQJPf-Dzn0bmpQuUUxIkZYk6nJL6eBjDFCXy2AXKmxKSsqv0stUevldemLPdo5ttQDzS_60nIDhFviwDjb_O5Xj6ePW8hOjjoyy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126866860</pqid></control><display><type>article</type><title>Physiological control for left ventricular assist devices based on deep reinforcement learning</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fernández‐Zapico, Diego ; Peirelinck, Thijs ; Deconinck, Geert ; Donker, Dirk W. ; Fresiello, Libera</creator><creatorcontrib>Fernández‐Zapico, Diego ; Peirelinck, Thijs ; Deconinck, Geert ; Donker, Dirk W. ; Fresiello, Libera</creatorcontrib><description>Background The improvement of controllers of left ventricular assist device (LVAD) technology supporting heart failure (HF) patients has enormous impact, given the high prevalence and mortality of HF in the population. The use of reinforcement learning for control applications in LVAD remains minimally explored. This work introduces a preload‐based deep reinforcement learning control for LVAD based on the proximal policy optimization algorithm. Methods The deep reinforcement learning control is built upon data derived from a deterministic high‐fidelity cardiorespiratory simulator exposed to variations of total blood volume, heart rate, systemic vascular resistance, pulmonary vascular resistance, right ventricular end‐systolic elastance, and left ventricular end‐systolic elastance, to replicate realistic inter‐ and intra‐patient variability of patients with a severe HF supported by LVAD. The deep reinforcement learning control obtained in this work is trained to avoid ventricular suction and allow aortic valve opening by using left ventricular pressure signals: end‐diastolic pressure, maximum pressure in the left ventricle (LV), and maximum pressure in the aorta. Results The results show controller obtained in this work, compared to the constant speed LVAD alternative, assures a more stable end‐diastolic volume (EDV), with a standard deviation of 5 mL and 9 mL, respectively, and a higher degree of aortic flow, with an average flow of 1.1 L/min and 0.9 L/min, respectively. Conclusion This work implements a deep reinforcement learning controller in a high‐fidelity cardiorespiratory simulator, resulting in increases of flow through the aortic valve and increases of EDV stability, when compared to a constant speed LVAD strategy. This work focuses on a left ventricular assist device control, based on deep reinforcement learning trained with the goal to prevent suction and promote aortic valve opening. The control is built upon data derived from a deterministic high fidelity cardiorespiratory simulator recreating different (patho)physiological conditions. Results show that the control assures adequate perfusion to end organs, increases flow through the aortic valve and promotes end diastolic left ventricular volume stability, when compared to a constant LVAD speed strategy.</description><identifier>ISSN: 0160-564X</identifier><identifier>ISSN: 1525-1594</identifier><identifier>EISSN: 1525-1594</identifier><identifier>DOI: 10.1111/aor.14845</identifier><identifier>PMID: 39289857</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Aorta ; Aortic valve ; Blood pressure ; Blood volume ; cardiorespiratory simulator ; Computer Simulation ; Congestive heart failure ; Control valves ; Controllers ; Deep Learning ; deep reinforcement learning ; Diastolic pressure ; heart failure ; Heart Failure - physiopathology ; Heart Failure - surgery ; Heart Failure - therapy ; Heart rate ; Heart valves ; Heart-Assist Devices ; Hemodynamics ; Humans ; Learning ; left ventricular assist device ; Machine learning ; Models, Cardiovascular ; physiological control ; Reinforcement ; Simulator fidelity ; Suction ; Ventricle ; Ventricular assist devices ; Ventricular Function, Left - physiology</subject><ispartof>Artificial organs, 2024-12, Vol.48 (12), p.1418-1429</ispartof><rights>2024 International Center for Artificial Organ and Transplantation (ICAOT) and Wiley Periodicals LLC.</rights><rights>Copyright © 2024 International Center for Artificial Organs and Transplantation and Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2435-12d3fbfdac81a91316d6c583d924e6bbd452a4dcda41626e02ec6b7d0b08a7b83</cites><orcidid>0000-0002-2225-3987 ; 0009-0004-7883-4221 ; 0000-0002-1080-8164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Faor.14845$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Faor.14845$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39289857$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernández‐Zapico, Diego</creatorcontrib><creatorcontrib>Peirelinck, Thijs</creatorcontrib><creatorcontrib>Deconinck, Geert</creatorcontrib><creatorcontrib>Donker, Dirk W.</creatorcontrib><creatorcontrib>Fresiello, Libera</creatorcontrib><title>Physiological control for left ventricular assist devices based on deep reinforcement learning</title><title>Artificial organs</title><addtitle>Artif Organs</addtitle><description>Background The improvement of controllers of left ventricular assist device (LVAD) technology supporting heart failure (HF) patients has enormous impact, given the high prevalence and mortality of HF in the population. The use of reinforcement learning for control applications in LVAD remains minimally explored. This work introduces a preload‐based deep reinforcement learning control for LVAD based on the proximal policy optimization algorithm. Methods The deep reinforcement learning control is built upon data derived from a deterministic high‐fidelity cardiorespiratory simulator exposed to variations of total blood volume, heart rate, systemic vascular resistance, pulmonary vascular resistance, right ventricular end‐systolic elastance, and left ventricular end‐systolic elastance, to replicate realistic inter‐ and intra‐patient variability of patients with a severe HF supported by LVAD. The deep reinforcement learning control obtained in this work is trained to avoid ventricular suction and allow aortic valve opening by using left ventricular pressure signals: end‐diastolic pressure, maximum pressure in the left ventricle (LV), and maximum pressure in the aorta. Results The results show controller obtained in this work, compared to the constant speed LVAD alternative, assures a more stable end‐diastolic volume (EDV), with a standard deviation of 5 mL and 9 mL, respectively, and a higher degree of aortic flow, with an average flow of 1.1 L/min and 0.9 L/min, respectively. Conclusion This work implements a deep reinforcement learning controller in a high‐fidelity cardiorespiratory simulator, resulting in increases of flow through the aortic valve and increases of EDV stability, when compared to a constant speed LVAD strategy. This work focuses on a left ventricular assist device control, based on deep reinforcement learning trained with the goal to prevent suction and promote aortic valve opening. The control is built upon data derived from a deterministic high fidelity cardiorespiratory simulator recreating different (patho)physiological conditions. Results show that the control assures adequate perfusion to end organs, increases flow through the aortic valve and promotes end diastolic left ventricular volume stability, when compared to a constant LVAD speed strategy.</description><subject>Algorithms</subject><subject>Aorta</subject><subject>Aortic valve</subject><subject>Blood pressure</subject><subject>Blood volume</subject><subject>cardiorespiratory simulator</subject><subject>Computer Simulation</subject><subject>Congestive heart failure</subject><subject>Control valves</subject><subject>Controllers</subject><subject>Deep Learning</subject><subject>deep reinforcement learning</subject><subject>Diastolic pressure</subject><subject>heart failure</subject><subject>Heart Failure - physiopathology</subject><subject>Heart Failure - surgery</subject><subject>Heart Failure - therapy</subject><subject>Heart rate</subject><subject>Heart valves</subject><subject>Heart-Assist Devices</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Learning</subject><subject>left ventricular assist device</subject><subject>Machine learning</subject><subject>Models, Cardiovascular</subject><subject>physiological control</subject><subject>Reinforcement</subject><subject>Simulator fidelity</subject><subject>Suction</subject><subject>Ventricle</subject><subject>Ventricular assist devices</subject><subject>Ventricular Function, Left - physiology</subject><issn>0160-564X</issn><issn>1525-1594</issn><issn>1525-1594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE9LAzEQxYMotlYPfgEJeNFD2ySbTbPHUvwHQkUUPLlkk9makm5q0q302xtt9SA4DAwMv_d4PIROKRnQNEPlw4ByyfM91KU5y_s0L_g-6hIqSD8X_KWDjmKcE0JGnIhD1MkKJguZj7ro9eFtE613fma1clj7ZhW8w7UP2EG9wmtID6tbpwJWMdq4wgbWVkPElYpgsG_SA5Y4gG2SSsMiKZJWhcY2s2N0UCsX4WR3e-j5-uppctu_n97cTcb3fc14lvIyk9VVbZSWVBU0o8IIncvMFIyDqCrDc6a40UZxKpgAwkCLamRIRaQaVTLroYut7zL49xbiqlzYqME51YBvY5lRIrhghWQJPf-Dzn0bmpQuUUxIkZYk6nJL6eBjDFCXy2AXKmxKSsqv0stUevldemLPdo5ttQDzS_60nIDhFviwDjb_O5Xj6ePW8hOjjoyy</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Fernández‐Zapico, Diego</creator><creator>Peirelinck, Thijs</creator><creator>Deconinck, Geert</creator><creator>Donker, Dirk W.</creator><creator>Fresiello, Libera</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2225-3987</orcidid><orcidid>https://orcid.org/0009-0004-7883-4221</orcidid><orcidid>https://orcid.org/0000-0002-1080-8164</orcidid></search><sort><creationdate>202412</creationdate><title>Physiological control for left ventricular assist devices based on deep reinforcement learning</title><author>Fernández‐Zapico, Diego ; Peirelinck, Thijs ; Deconinck, Geert ; Donker, Dirk W. ; Fresiello, Libera</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2435-12d3fbfdac81a91316d6c583d924e6bbd452a4dcda41626e02ec6b7d0b08a7b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Aorta</topic><topic>Aortic valve</topic><topic>Blood pressure</topic><topic>Blood volume</topic><topic>cardiorespiratory simulator</topic><topic>Computer Simulation</topic><topic>Congestive heart failure</topic><topic>Control valves</topic><topic>Controllers</topic><topic>Deep Learning</topic><topic>deep reinforcement learning</topic><topic>Diastolic pressure</topic><topic>heart failure</topic><topic>Heart Failure - physiopathology</topic><topic>Heart Failure - surgery</topic><topic>Heart Failure - therapy</topic><topic>Heart rate</topic><topic>Heart valves</topic><topic>Heart-Assist Devices</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Learning</topic><topic>left ventricular assist device</topic><topic>Machine learning</topic><topic>Models, Cardiovascular</topic><topic>physiological control</topic><topic>Reinforcement</topic><topic>Simulator fidelity</topic><topic>Suction</topic><topic>Ventricle</topic><topic>Ventricular assist devices</topic><topic>Ventricular Function, Left - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernández‐Zapico, Diego</creatorcontrib><creatorcontrib>Peirelinck, Thijs</creatorcontrib><creatorcontrib>Deconinck, Geert</creatorcontrib><creatorcontrib>Donker, Dirk W.</creatorcontrib><creatorcontrib>Fresiello, Libera</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial organs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernández‐Zapico, Diego</au><au>Peirelinck, Thijs</au><au>Deconinck, Geert</au><au>Donker, Dirk W.</au><au>Fresiello, Libera</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physiological control for left ventricular assist devices based on deep reinforcement learning</atitle><jtitle>Artificial organs</jtitle><addtitle>Artif Organs</addtitle><date>2024-12</date><risdate>2024</risdate><volume>48</volume><issue>12</issue><spage>1418</spage><epage>1429</epage><pages>1418-1429</pages><issn>0160-564X</issn><issn>1525-1594</issn><eissn>1525-1594</eissn><abstract>Background The improvement of controllers of left ventricular assist device (LVAD) technology supporting heart failure (HF) patients has enormous impact, given the high prevalence and mortality of HF in the population. The use of reinforcement learning for control applications in LVAD remains minimally explored. This work introduces a preload‐based deep reinforcement learning control for LVAD based on the proximal policy optimization algorithm. Methods The deep reinforcement learning control is built upon data derived from a deterministic high‐fidelity cardiorespiratory simulator exposed to variations of total blood volume, heart rate, systemic vascular resistance, pulmonary vascular resistance, right ventricular end‐systolic elastance, and left ventricular end‐systolic elastance, to replicate realistic inter‐ and intra‐patient variability of patients with a severe HF supported by LVAD. The deep reinforcement learning control obtained in this work is trained to avoid ventricular suction and allow aortic valve opening by using left ventricular pressure signals: end‐diastolic pressure, maximum pressure in the left ventricle (LV), and maximum pressure in the aorta. Results The results show controller obtained in this work, compared to the constant speed LVAD alternative, assures a more stable end‐diastolic volume (EDV), with a standard deviation of 5 mL and 9 mL, respectively, and a higher degree of aortic flow, with an average flow of 1.1 L/min and 0.9 L/min, respectively. Conclusion This work implements a deep reinforcement learning controller in a high‐fidelity cardiorespiratory simulator, resulting in increases of flow through the aortic valve and increases of EDV stability, when compared to a constant speed LVAD strategy. This work focuses on a left ventricular assist device control, based on deep reinforcement learning trained with the goal to prevent suction and promote aortic valve opening. The control is built upon data derived from a deterministic high fidelity cardiorespiratory simulator recreating different (patho)physiological conditions. Results show that the control assures adequate perfusion to end organs, increases flow through the aortic valve and promotes end diastolic left ventricular volume stability, when compared to a constant LVAD speed strategy.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39289857</pmid><doi>10.1111/aor.14845</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2225-3987</orcidid><orcidid>https://orcid.org/0009-0004-7883-4221</orcidid><orcidid>https://orcid.org/0000-0002-1080-8164</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0160-564X
ispartof Artificial organs, 2024-12, Vol.48 (12), p.1418-1429
issn 0160-564X
1525-1594
1525-1594
language eng
recordid cdi_proquest_miscellaneous_3106462982
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Aorta
Aortic valve
Blood pressure
Blood volume
cardiorespiratory simulator
Computer Simulation
Congestive heart failure
Control valves
Controllers
Deep Learning
deep reinforcement learning
Diastolic pressure
heart failure
Heart Failure - physiopathology
Heart Failure - surgery
Heart Failure - therapy
Heart rate
Heart valves
Heart-Assist Devices
Hemodynamics
Humans
Learning
left ventricular assist device
Machine learning
Models, Cardiovascular
physiological control
Reinforcement
Simulator fidelity
Suction
Ventricle
Ventricular assist devices
Ventricular Function, Left - physiology
title Physiological control for left ventricular assist devices based on deep reinforcement learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physiological%20control%20for%20left%20ventricular%20assist%20devices%20based%20on%20deep%20reinforcement%20learning&rft.jtitle=Artificial%20organs&rft.au=Fern%C3%A1ndez%E2%80%90Zapico,%20Diego&rft.date=2024-12&rft.volume=48&rft.issue=12&rft.spage=1418&rft.epage=1429&rft.pages=1418-1429&rft.issn=0160-564X&rft.eissn=1525-1594&rft_id=info:doi/10.1111/aor.14845&rft_dat=%3Cproquest_cross%3E3126866860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126866860&rft_id=info:pmid/39289857&rfr_iscdi=true