3D bioprinting technology and equipment based on microvalve control

3D bioprinting technology is widely used in biomedical fields such as tissue regeneration and constructing pathological model. The prevailing printing technique is extrusion-based bioprinting. In this printing method, the bioink needs to meet both printability and functionality, which are often conf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2024-12, Vol.121 (12), p.3768-3781
Hauptverfasser: Kang, Rihui, Wu, Jiaxing, Cheng, Rong, Li, Meng, Sang, Luxiao, Zhang, Hulin, Sang, Shengbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:3D bioprinting technology is widely used in biomedical fields such as tissue regeneration and constructing pathological model. The prevailing printing technique is extrusion-based bioprinting. In this printing method, the bioink needs to meet both printability and functionality, which are often conflicting requirements. Therefore, this study has developed an innovative microvalve-based equipment, incorporating components such as pressure control, a three-dimensional motion platform, and microvalve. Here, we present a droplet-based method for constructing complex three-dimensional structures. By leveraging the rapid switching characteristics of the microvalve, this equipment can achieve precise printing of bio-materials with viscosities as low as 10mPa·s, significantly expanding the biofabrication window for bioinks. This technology is of great significance for 3D bioprinting in tissue engineering and lays a solid foundation for the construction of complex artificial organ tissues.
ISSN:0006-3592
1097-0290
1097-0290
DOI:10.1002/bit.28850