Harnessing noncanonical redox cofactors to advance synthetic assimilation of one-carbon feedstocks
One-carbon (C1) feedstocks, such as carbon monoxide (CO), formate (HCO2H), methanol (CH3OH), and methane (CH4), can be obtained either through stepwise electrochemical reduction of CO2 with renewable electricity or via processing of organic side streams. These C1 substrates are increasingly investig...
Gespeichert in:
Veröffentlicht in: | Current opinion in biotechnology 2024-12, Vol.90, p.103195, Article 103195 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 103195 |
container_title | Current opinion in biotechnology |
container_volume | 90 |
creator | Orsi, Enrico Hernández-Sancho, Javier M Remeijer, Maaike S Kruis, Aleksander J Volke, Daniel C Claassens, Nico J Paul, Caroline E Bruggeman, Frank J Weusthuis, Ruud A Nikel, Pablo I |
description | One-carbon (C1) feedstocks, such as carbon monoxide (CO), formate (HCO2H), methanol (CH3OH), and methane (CH4), can be obtained either through stepwise electrochemical reduction of CO2 with renewable electricity or via processing of organic side streams. These C1 substrates are increasingly investigated in biotechnology as they can contribute to a circular carbon economy. In recent years, noncanonical redox cofactors (NCRCs) emerged as a tool to generate synthetic electron circuits in cell factories to maximize electron transfer within a pathway of interest. Here, we argue that expanding the use of NCRCs in the context of C1-driven bioprocesses will boost product yields and facilitate challenging redox transactions that are typically out of the scope of natural cofactors due to inherent thermodynamic constraints.
[Display omitted]
•We discuss the use of NCRCs for supporting one-carbon assimilation.•Engineered one-carbon oxidizing enzymes can accept NCRCs.•NCRCs can lower the barrier of thermodynamically challenging reactions.•Coupling one-carbon utilization and NCRCs to growth is not trivial.•One-carbon assimilation and NCRCs can improve yields in mixotrophic cultivations. |
doi_str_mv | 10.1016/j.copbio.2024.103195 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3106460483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0958166924001319</els_id><sourcerecordid>3106460483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-81d31889a56be931f3be16328f9a2fd0ff62a1a270fab5c4ca7e2a343d841d113</originalsourceid><addsrcrecordid>eNp9kE-LFDEQxYMo7rj6DURy9NJj_nSnk4sgy-oKC170HKqTimbsScYks7jf3iy9evRSRRXv1aN-hLzmbM8ZV-8Oe5dPS8x7wcTYV5Kb6QnZcT2bgY3CPCU7ZiY9cKXMBXlR64ExNsmZPScX0git1WR2ZLmBkrDWmL7TlJODXqKDlRb0-Td1OYBruVTaMgV_B8khrfep_cAWHYVuPMYVWsyJ5kBzwsFBWfoUEH1t2f2sL8mzAGvFV4_9knz7eP316ma4_fLp89WH28EJPbdBcy-51gYmtaCRPMgFuZJCBwMieBaCEsBBzCzAMrnRwYwC5Ci9HrnnXF6St9vdU8m_zlibPcbqcF0hYT5XKzlTo2Kjll06blJXcq0Fgz2VeIRybzmzD3TtwW507QNdu9HttjePCefliP6f6S_OLni_CbD_eRex2OoidmY-FnTN-hz_n_AHS9yO9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106460483</pqid></control><display><type>article</type><title>Harnessing noncanonical redox cofactors to advance synthetic assimilation of one-carbon feedstocks</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Orsi, Enrico ; Hernández-Sancho, Javier M ; Remeijer, Maaike S ; Kruis, Aleksander J ; Volke, Daniel C ; Claassens, Nico J ; Paul, Caroline E ; Bruggeman, Frank J ; Weusthuis, Ruud A ; Nikel, Pablo I</creator><creatorcontrib>Orsi, Enrico ; Hernández-Sancho, Javier M ; Remeijer, Maaike S ; Kruis, Aleksander J ; Volke, Daniel C ; Claassens, Nico J ; Paul, Caroline E ; Bruggeman, Frank J ; Weusthuis, Ruud A ; Nikel, Pablo I</creatorcontrib><description>One-carbon (C1) feedstocks, such as carbon monoxide (CO), formate (HCO2H), methanol (CH3OH), and methane (CH4), can be obtained either through stepwise electrochemical reduction of CO2 with renewable electricity or via processing of organic side streams. These C1 substrates are increasingly investigated in biotechnology as they can contribute to a circular carbon economy. In recent years, noncanonical redox cofactors (NCRCs) emerged as a tool to generate synthetic electron circuits in cell factories to maximize electron transfer within a pathway of interest. Here, we argue that expanding the use of NCRCs in the context of C1-driven bioprocesses will boost product yields and facilitate challenging redox transactions that are typically out of the scope of natural cofactors due to inherent thermodynamic constraints.
[Display omitted]
•We discuss the use of NCRCs for supporting one-carbon assimilation.•Engineered one-carbon oxidizing enzymes can accept NCRCs.•NCRCs can lower the barrier of thermodynamically challenging reactions.•Coupling one-carbon utilization and NCRCs to growth is not trivial.•One-carbon assimilation and NCRCs can improve yields in mixotrophic cultivations.</description><identifier>ISSN: 0958-1669</identifier><identifier>ISSN: 1879-0429</identifier><identifier>EISSN: 1879-0429</identifier><identifier>DOI: 10.1016/j.copbio.2024.103195</identifier><identifier>PMID: 39288659</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biotechnology - methods ; Carbon - chemistry ; Carbon - metabolism ; Carbon Dioxide - chemistry ; Carbon Dioxide - metabolism ; Carbon Monoxide - chemistry ; Carbon Monoxide - metabolism ; Formates - chemistry ; Formates - metabolism ; Methane - chemistry ; Methane - metabolism ; Methanol - chemistry ; Methanol - metabolism ; Oxidation-Reduction</subject><ispartof>Current opinion in biotechnology, 2024-12, Vol.90, p.103195, Article 103195</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-81d31889a56be931f3be16328f9a2fd0ff62a1a270fab5c4ca7e2a343d841d113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0958166924001319$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39288659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Orsi, Enrico</creatorcontrib><creatorcontrib>Hernández-Sancho, Javier M</creatorcontrib><creatorcontrib>Remeijer, Maaike S</creatorcontrib><creatorcontrib>Kruis, Aleksander J</creatorcontrib><creatorcontrib>Volke, Daniel C</creatorcontrib><creatorcontrib>Claassens, Nico J</creatorcontrib><creatorcontrib>Paul, Caroline E</creatorcontrib><creatorcontrib>Bruggeman, Frank J</creatorcontrib><creatorcontrib>Weusthuis, Ruud A</creatorcontrib><creatorcontrib>Nikel, Pablo I</creatorcontrib><title>Harnessing noncanonical redox cofactors to advance synthetic assimilation of one-carbon feedstocks</title><title>Current opinion in biotechnology</title><addtitle>Curr Opin Biotechnol</addtitle><description>One-carbon (C1) feedstocks, such as carbon monoxide (CO), formate (HCO2H), methanol (CH3OH), and methane (CH4), can be obtained either through stepwise electrochemical reduction of CO2 with renewable electricity or via processing of organic side streams. These C1 substrates are increasingly investigated in biotechnology as they can contribute to a circular carbon economy. In recent years, noncanonical redox cofactors (NCRCs) emerged as a tool to generate synthetic electron circuits in cell factories to maximize electron transfer within a pathway of interest. Here, we argue that expanding the use of NCRCs in the context of C1-driven bioprocesses will boost product yields and facilitate challenging redox transactions that are typically out of the scope of natural cofactors due to inherent thermodynamic constraints.
[Display omitted]
•We discuss the use of NCRCs for supporting one-carbon assimilation.•Engineered one-carbon oxidizing enzymes can accept NCRCs.•NCRCs can lower the barrier of thermodynamically challenging reactions.•Coupling one-carbon utilization and NCRCs to growth is not trivial.•One-carbon assimilation and NCRCs can improve yields in mixotrophic cultivations.</description><subject>Biotechnology - methods</subject><subject>Carbon - chemistry</subject><subject>Carbon - metabolism</subject><subject>Carbon Dioxide - chemistry</subject><subject>Carbon Dioxide - metabolism</subject><subject>Carbon Monoxide - chemistry</subject><subject>Carbon Monoxide - metabolism</subject><subject>Formates - chemistry</subject><subject>Formates - metabolism</subject><subject>Methane - chemistry</subject><subject>Methane - metabolism</subject><subject>Methanol - chemistry</subject><subject>Methanol - metabolism</subject><subject>Oxidation-Reduction</subject><issn>0958-1669</issn><issn>1879-0429</issn><issn>1879-0429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE-LFDEQxYMo7rj6DURy9NJj_nSnk4sgy-oKC170HKqTimbsScYks7jf3iy9evRSRRXv1aN-hLzmbM8ZV-8Oe5dPS8x7wcTYV5Kb6QnZcT2bgY3CPCU7ZiY9cKXMBXlR64ExNsmZPScX0git1WR2ZLmBkrDWmL7TlJODXqKDlRb0-Td1OYBruVTaMgV_B8khrfep_cAWHYVuPMYVWsyJ5kBzwsFBWfoUEH1t2f2sL8mzAGvFV4_9knz7eP316ma4_fLp89WH28EJPbdBcy-51gYmtaCRPMgFuZJCBwMieBaCEsBBzCzAMrnRwYwC5Ci9HrnnXF6St9vdU8m_zlibPcbqcF0hYT5XKzlTo2Kjll06blJXcq0Fgz2VeIRybzmzD3TtwW507QNdu9HttjePCefliP6f6S_OLni_CbD_eRex2OoidmY-FnTN-hz_n_AHS9yO9Q</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Orsi, Enrico</creator><creator>Hernández-Sancho, Javier M</creator><creator>Remeijer, Maaike S</creator><creator>Kruis, Aleksander J</creator><creator>Volke, Daniel C</creator><creator>Claassens, Nico J</creator><creator>Paul, Caroline E</creator><creator>Bruggeman, Frank J</creator><creator>Weusthuis, Ruud A</creator><creator>Nikel, Pablo I</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202412</creationdate><title>Harnessing noncanonical redox cofactors to advance synthetic assimilation of one-carbon feedstocks</title><author>Orsi, Enrico ; Hernández-Sancho, Javier M ; Remeijer, Maaike S ; Kruis, Aleksander J ; Volke, Daniel C ; Claassens, Nico J ; Paul, Caroline E ; Bruggeman, Frank J ; Weusthuis, Ruud A ; Nikel, Pablo I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-81d31889a56be931f3be16328f9a2fd0ff62a1a270fab5c4ca7e2a343d841d113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biotechnology - methods</topic><topic>Carbon - chemistry</topic><topic>Carbon - metabolism</topic><topic>Carbon Dioxide - chemistry</topic><topic>Carbon Dioxide - metabolism</topic><topic>Carbon Monoxide - chemistry</topic><topic>Carbon Monoxide - metabolism</topic><topic>Formates - chemistry</topic><topic>Formates - metabolism</topic><topic>Methane - chemistry</topic><topic>Methane - metabolism</topic><topic>Methanol - chemistry</topic><topic>Methanol - metabolism</topic><topic>Oxidation-Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orsi, Enrico</creatorcontrib><creatorcontrib>Hernández-Sancho, Javier M</creatorcontrib><creatorcontrib>Remeijer, Maaike S</creatorcontrib><creatorcontrib>Kruis, Aleksander J</creatorcontrib><creatorcontrib>Volke, Daniel C</creatorcontrib><creatorcontrib>Claassens, Nico J</creatorcontrib><creatorcontrib>Paul, Caroline E</creatorcontrib><creatorcontrib>Bruggeman, Frank J</creatorcontrib><creatorcontrib>Weusthuis, Ruud A</creatorcontrib><creatorcontrib>Nikel, Pablo I</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current opinion in biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orsi, Enrico</au><au>Hernández-Sancho, Javier M</au><au>Remeijer, Maaike S</au><au>Kruis, Aleksander J</au><au>Volke, Daniel C</au><au>Claassens, Nico J</au><au>Paul, Caroline E</au><au>Bruggeman, Frank J</au><au>Weusthuis, Ruud A</au><au>Nikel, Pablo I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing noncanonical redox cofactors to advance synthetic assimilation of one-carbon feedstocks</atitle><jtitle>Current opinion in biotechnology</jtitle><addtitle>Curr Opin Biotechnol</addtitle><date>2024-12</date><risdate>2024</risdate><volume>90</volume><spage>103195</spage><pages>103195-</pages><artnum>103195</artnum><issn>0958-1669</issn><issn>1879-0429</issn><eissn>1879-0429</eissn><abstract>One-carbon (C1) feedstocks, such as carbon monoxide (CO), formate (HCO2H), methanol (CH3OH), and methane (CH4), can be obtained either through stepwise electrochemical reduction of CO2 with renewable electricity or via processing of organic side streams. These C1 substrates are increasingly investigated in biotechnology as they can contribute to a circular carbon economy. In recent years, noncanonical redox cofactors (NCRCs) emerged as a tool to generate synthetic electron circuits in cell factories to maximize electron transfer within a pathway of interest. Here, we argue that expanding the use of NCRCs in the context of C1-driven bioprocesses will boost product yields and facilitate challenging redox transactions that are typically out of the scope of natural cofactors due to inherent thermodynamic constraints.
[Display omitted]
•We discuss the use of NCRCs for supporting one-carbon assimilation.•Engineered one-carbon oxidizing enzymes can accept NCRCs.•NCRCs can lower the barrier of thermodynamically challenging reactions.•Coupling one-carbon utilization and NCRCs to growth is not trivial.•One-carbon assimilation and NCRCs can improve yields in mixotrophic cultivations.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39288659</pmid><doi>10.1016/j.copbio.2024.103195</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0958-1669 |
ispartof | Current opinion in biotechnology, 2024-12, Vol.90, p.103195, Article 103195 |
issn | 0958-1669 1879-0429 1879-0429 |
language | eng |
recordid | cdi_proquest_miscellaneous_3106460483 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Biotechnology - methods Carbon - chemistry Carbon - metabolism Carbon Dioxide - chemistry Carbon Dioxide - metabolism Carbon Monoxide - chemistry Carbon Monoxide - metabolism Formates - chemistry Formates - metabolism Methane - chemistry Methane - metabolism Methanol - chemistry Methanol - metabolism Oxidation-Reduction |
title | Harnessing noncanonical redox cofactors to advance synthetic assimilation of one-carbon feedstocks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T05%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20noncanonical%20redox%20cofactors%20to%20advance%20synthetic%20assimilation%20of%20one-carbon%20feedstocks&rft.jtitle=Current%20opinion%20in%20biotechnology&rft.au=Orsi,%20Enrico&rft.date=2024-12&rft.volume=90&rft.spage=103195&rft.pages=103195-&rft.artnum=103195&rft.issn=0958-1669&rft.eissn=1879-0429&rft_id=info:doi/10.1016/j.copbio.2024.103195&rft_dat=%3Cproquest_cross%3E3106460483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106460483&rft_id=info:pmid/39288659&rft_els_id=S0958166924001319&rfr_iscdi=true |