Defect Engineering in CuS1‐x Nanoflowers Enables Low‐Overpotential and Long‐Cycle‐Life of Lithium‐Oxygen Batteries
The defect engineering is essential for the development of efficient cathode catalysts for lithium‐oxygen batteries. Herein, CuS1‐x nanoflowers are fabricated by microwave hydrothermal method. Through theoretical and experimental analysis, the S vacancies are observed, which result in augmented char...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-09, Vol.20 (49), p.e2406081-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 49 |
container_start_page | e2406081 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Feng, Juanjuan Abbas, Adeel Zhao, Lingwen Sun, Hao Li, Zhihao Wang, Chunlei Wang, Hongchao |
description | The defect engineering is essential for the development of efficient cathode catalysts for lithium‐oxygen batteries. Herein, CuS1‐x nanoflowers are fabricated by microwave hydrothermal method. Through theoretical and experimental analysis, the S vacancies are observed, which result in augmented charge around Cu, improved adsorption of LiO2, and reduced overpotential. On the one hand, the generated electronic defects cause the Fermi level to shift toward the conduction band, which enhances the electronic conductivity and ion transfer. On the other hand, the increased S vacancies provide a large number of Cu active sites, which increase the charge transfer from Cu to LiO2, which improves the stability of the intermediate adsorption. Interactively, CuS1‐x catalyst obtains a capacity of 23,227 mAh g−1 and a cycle life of 225 at 500 mA g−1. This work will be helpful for obtaining an efficient cathode catalyst by providing a deep understanding of vacancy modulation in advanced catalysts.
CuS nanoflowers consisting of 2D nanosheets with S vacancies are successfully synthesized by microwave hydrothermal method. Theoretical and experiments demonstrate the introduction of sulfur vacancies achieves charge redistribution and the CuS1‐x nanoflowers have excellent electrocatalytic performance as cathode catalysts in lithium‐oxygen batteries. |
doi_str_mv | 10.1002/smll.202406081 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3106457918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3140827782</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1961-12187661fe94c86fab4b41decdda5caba3f7f19ed65c4fb5811e4fc2b99bd33</originalsourceid><addsrcrecordid>eNpdkbtOwzAUhiMEElBYmS2xsLT4OK6TjFDKRQp0KHvkJMfBleOUOKGtxMAj8Iw8Ca6KOjCdy_-di_QHwQXQEVDKrl1tzIhRxqmgMRwEJyAgHIqYJYf7HOhxcOrcgtIQGI9Ogs87VFh0ZGorbRFbbSuiLZn0c_j5-l6TF2kbZZoVts4zMjfoSNqsvDb7wHbZdGg7LQ2RtvR9W3lhsikM-phqhaRRJNXdm-7r7ch6U6Elt7Lr_CV0Z8GRksbh-V8cBPP76evkcZjOHp4mN-lwCYmAITCIIyFAYcKLWCiZ85xDiUVZynEhcxmqSEGCpRgXXOXjGAC5KlieJHkZhoPgard12TbvPbouq7Ur0BhpseldFgIVfBwlEHv08h-6aPrW-t88xWnMoihmnkp21Eob3GTLVtey3WRAs60P2daHbO9DNn9O030V_gIKLoU-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140827782</pqid></control><display><type>article</type><title>Defect Engineering in CuS1‐x Nanoflowers Enables Low‐Overpotential and Long‐Cycle‐Life of Lithium‐Oxygen Batteries</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Feng, Juanjuan ; Abbas, Adeel ; Zhao, Lingwen ; Sun, Hao ; Li, Zhihao ; Wang, Chunlei ; Wang, Hongchao</creator><creatorcontrib>Feng, Juanjuan ; Abbas, Adeel ; Zhao, Lingwen ; Sun, Hao ; Li, Zhihao ; Wang, Chunlei ; Wang, Hongchao</creatorcontrib><description>The defect engineering is essential for the development of efficient cathode catalysts for lithium‐oxygen batteries. Herein, CuS1‐x nanoflowers are fabricated by microwave hydrothermal method. Through theoretical and experimental analysis, the S vacancies are observed, which result in augmented charge around Cu, improved adsorption of LiO2, and reduced overpotential. On the one hand, the generated electronic defects cause the Fermi level to shift toward the conduction band, which enhances the electronic conductivity and ion transfer. On the other hand, the increased S vacancies provide a large number of Cu active sites, which increase the charge transfer from Cu to LiO2, which improves the stability of the intermediate adsorption. Interactively, CuS1‐x catalyst obtains a capacity of 23,227 mAh g−1 and a cycle life of 225 at 500 mA g−1. This work will be helpful for obtaining an efficient cathode catalyst by providing a deep understanding of vacancy modulation in advanced catalysts.
CuS nanoflowers consisting of 2D nanosheets with S vacancies are successfully synthesized by microwave hydrothermal method. Theoretical and experiments demonstrate the introduction of sulfur vacancies achieves charge redistribution and the CuS1‐x nanoflowers have excellent electrocatalytic performance as cathode catalysts in lithium‐oxygen batteries.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202406081</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Catalysts ; Cathodes ; Charge transfer ; Conduction bands ; CuS1‐x nanoflowers ; Defects ; Lithium ; Li‐O2 batteries ; Oxygen ; sulfur vacancies</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-09, Vol.20 (49), p.e2406081-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8731-9986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202406081$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202406081$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Feng, Juanjuan</creatorcontrib><creatorcontrib>Abbas, Adeel</creatorcontrib><creatorcontrib>Zhao, Lingwen</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><creatorcontrib>Li, Zhihao</creatorcontrib><creatorcontrib>Wang, Chunlei</creatorcontrib><creatorcontrib>Wang, Hongchao</creatorcontrib><title>Defect Engineering in CuS1‐x Nanoflowers Enables Low‐Overpotential and Long‐Cycle‐Life of Lithium‐Oxygen Batteries</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>The defect engineering is essential for the development of efficient cathode catalysts for lithium‐oxygen batteries. Herein, CuS1‐x nanoflowers are fabricated by microwave hydrothermal method. Through theoretical and experimental analysis, the S vacancies are observed, which result in augmented charge around Cu, improved adsorption of LiO2, and reduced overpotential. On the one hand, the generated electronic defects cause the Fermi level to shift toward the conduction band, which enhances the electronic conductivity and ion transfer. On the other hand, the increased S vacancies provide a large number of Cu active sites, which increase the charge transfer from Cu to LiO2, which improves the stability of the intermediate adsorption. Interactively, CuS1‐x catalyst obtains a capacity of 23,227 mAh g−1 and a cycle life of 225 at 500 mA g−1. This work will be helpful for obtaining an efficient cathode catalyst by providing a deep understanding of vacancy modulation in advanced catalysts.
CuS nanoflowers consisting of 2D nanosheets with S vacancies are successfully synthesized by microwave hydrothermal method. Theoretical and experiments demonstrate the introduction of sulfur vacancies achieves charge redistribution and the CuS1‐x nanoflowers have excellent electrocatalytic performance as cathode catalysts in lithium‐oxygen batteries.</description><subject>Adsorption</subject><subject>Catalysts</subject><subject>Cathodes</subject><subject>Charge transfer</subject><subject>Conduction bands</subject><subject>CuS1‐x nanoflowers</subject><subject>Defects</subject><subject>Lithium</subject><subject>Li‐O2 batteries</subject><subject>Oxygen</subject><subject>sulfur vacancies</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkbtOwzAUhiMEElBYmS2xsLT4OK6TjFDKRQp0KHvkJMfBleOUOKGtxMAj8Iw8Ca6KOjCdy_-di_QHwQXQEVDKrl1tzIhRxqmgMRwEJyAgHIqYJYf7HOhxcOrcgtIQGI9Ogs87VFh0ZGorbRFbbSuiLZn0c_j5-l6TF2kbZZoVts4zMjfoSNqsvDb7wHbZdGg7LQ2RtvR9W3lhsikM-phqhaRRJNXdm-7r7ch6U6Elt7Lr_CV0Z8GRksbh-V8cBPP76evkcZjOHp4mN-lwCYmAITCIIyFAYcKLWCiZ85xDiUVZynEhcxmqSEGCpRgXXOXjGAC5KlieJHkZhoPgard12TbvPbouq7Ur0BhpseldFgIVfBwlEHv08h-6aPrW-t88xWnMoihmnkp21Eob3GTLVtey3WRAs60P2daHbO9DNn9O030V_gIKLoU-</recordid><startdate>20240917</startdate><enddate>20240917</enddate><creator>Feng, Juanjuan</creator><creator>Abbas, Adeel</creator><creator>Zhao, Lingwen</creator><creator>Sun, Hao</creator><creator>Li, Zhihao</creator><creator>Wang, Chunlei</creator><creator>Wang, Hongchao</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8731-9986</orcidid></search><sort><creationdate>20240917</creationdate><title>Defect Engineering in CuS1‐x Nanoflowers Enables Low‐Overpotential and Long‐Cycle‐Life of Lithium‐Oxygen Batteries</title><author>Feng, Juanjuan ; Abbas, Adeel ; Zhao, Lingwen ; Sun, Hao ; Li, Zhihao ; Wang, Chunlei ; Wang, Hongchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1961-12187661fe94c86fab4b41decdda5caba3f7f19ed65c4fb5811e4fc2b99bd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Catalysts</topic><topic>Cathodes</topic><topic>Charge transfer</topic><topic>Conduction bands</topic><topic>CuS1‐x nanoflowers</topic><topic>Defects</topic><topic>Lithium</topic><topic>Li‐O2 batteries</topic><topic>Oxygen</topic><topic>sulfur vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Juanjuan</creatorcontrib><creatorcontrib>Abbas, Adeel</creatorcontrib><creatorcontrib>Zhao, Lingwen</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><creatorcontrib>Li, Zhihao</creatorcontrib><creatorcontrib>Wang, Chunlei</creatorcontrib><creatorcontrib>Wang, Hongchao</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Juanjuan</au><au>Abbas, Adeel</au><au>Zhao, Lingwen</au><au>Sun, Hao</au><au>Li, Zhihao</au><au>Wang, Chunlei</au><au>Wang, Hongchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect Engineering in CuS1‐x Nanoflowers Enables Low‐Overpotential and Long‐Cycle‐Life of Lithium‐Oxygen Batteries</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-09-17</date><risdate>2024</risdate><volume>20</volume><issue>49</issue><spage>e2406081</spage><epage>n/a</epage><pages>e2406081-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>The defect engineering is essential for the development of efficient cathode catalysts for lithium‐oxygen batteries. Herein, CuS1‐x nanoflowers are fabricated by microwave hydrothermal method. Through theoretical and experimental analysis, the S vacancies are observed, which result in augmented charge around Cu, improved adsorption of LiO2, and reduced overpotential. On the one hand, the generated electronic defects cause the Fermi level to shift toward the conduction band, which enhances the electronic conductivity and ion transfer. On the other hand, the increased S vacancies provide a large number of Cu active sites, which increase the charge transfer from Cu to LiO2, which improves the stability of the intermediate adsorption. Interactively, CuS1‐x catalyst obtains a capacity of 23,227 mAh g−1 and a cycle life of 225 at 500 mA g−1. This work will be helpful for obtaining an efficient cathode catalyst by providing a deep understanding of vacancy modulation in advanced catalysts.
CuS nanoflowers consisting of 2D nanosheets with S vacancies are successfully synthesized by microwave hydrothermal method. Theoretical and experiments demonstrate the introduction of sulfur vacancies achieves charge redistribution and the CuS1‐x nanoflowers have excellent electrocatalytic performance as cathode catalysts in lithium‐oxygen batteries.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202406081</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8731-9986</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-09, Vol.20 (49), p.e2406081-n/a |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_3106457918 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Adsorption Catalysts Cathodes Charge transfer Conduction bands CuS1‐x nanoflowers Defects Lithium Li‐O2 batteries Oxygen sulfur vacancies |
title | Defect Engineering in CuS1‐x Nanoflowers Enables Low‐Overpotential and Long‐Cycle‐Life of Lithium‐Oxygen Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20Engineering%20in%20CuS1%E2%80%90x%20Nanoflowers%20Enables%20Low%E2%80%90Overpotential%20and%20Long%E2%80%90Cycle%E2%80%90Life%20of%20Lithium%E2%80%90Oxygen%20Batteries&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Feng,%20Juanjuan&rft.date=2024-09-17&rft.volume=20&rft.issue=49&rft.spage=e2406081&rft.epage=n/a&rft.pages=e2406081-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202406081&rft_dat=%3Cproquest_wiley%3E3140827782%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3140827782&rft_id=info:pmid/&rfr_iscdi=true |