Defect Engineering in CuS1‐x Nanoflowers Enables Low‐Overpotential and Long‐Cycle‐Life of Lithium‐Oxygen Batteries

The defect engineering is essential for the development of efficient cathode catalysts for lithium‐oxygen batteries. Herein, CuS1‐x nanoflowers are fabricated by microwave hydrothermal method. Through theoretical and experimental analysis, the S vacancies are observed, which result in augmented char...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-09, Vol.20 (49), p.e2406081-n/a
Hauptverfasser: Feng, Juanjuan, Abbas, Adeel, Zhao, Lingwen, Sun, Hao, Li, Zhihao, Wang, Chunlei, Wang, Hongchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 49
container_start_page e2406081
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Feng, Juanjuan
Abbas, Adeel
Zhao, Lingwen
Sun, Hao
Li, Zhihao
Wang, Chunlei
Wang, Hongchao
description The defect engineering is essential for the development of efficient cathode catalysts for lithium‐oxygen batteries. Herein, CuS1‐x nanoflowers are fabricated by microwave hydrothermal method. Through theoretical and experimental analysis, the S vacancies are observed, which result in augmented charge around Cu, improved adsorption of LiO2, and reduced overpotential. On the one hand, the generated electronic defects cause the Fermi level to shift toward the conduction band, which enhances the electronic conductivity and ion transfer. On the other hand, the increased S vacancies provide a large number of Cu active sites, which increase the charge transfer from Cu to LiO2, which improves the stability of the intermediate adsorption. Interactively, CuS1‐x catalyst obtains a capacity of 23,227 mAh g−1 and a cycle life of 225 at 500 mA g−1. This work will be helpful for obtaining an efficient cathode catalyst by providing a deep understanding of vacancy modulation in advanced catalysts. CuS nanoflowers consisting of 2D nanosheets with S vacancies are successfully synthesized by microwave hydrothermal method. Theoretical and experiments demonstrate the introduction of sulfur vacancies achieves charge redistribution and the CuS1‐x nanoflowers have excellent electrocatalytic performance as cathode catalysts in lithium‐oxygen batteries.
doi_str_mv 10.1002/smll.202406081
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3106457918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3140827782</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1961-12187661fe94c86fab4b41decdda5caba3f7f19ed65c4fb5811e4fc2b99bd33</originalsourceid><addsrcrecordid>eNpdkbtOwzAUhiMEElBYmS2xsLT4OK6TjFDKRQp0KHvkJMfBleOUOKGtxMAj8Iw8Ca6KOjCdy_-di_QHwQXQEVDKrl1tzIhRxqmgMRwEJyAgHIqYJYf7HOhxcOrcgtIQGI9Ogs87VFh0ZGorbRFbbSuiLZn0c_j5-l6TF2kbZZoVts4zMjfoSNqsvDb7wHbZdGg7LQ2RtvR9W3lhsikM-phqhaRRJNXdm-7r7ch6U6Elt7Lr_CV0Z8GRksbh-V8cBPP76evkcZjOHp4mN-lwCYmAITCIIyFAYcKLWCiZ85xDiUVZynEhcxmqSEGCpRgXXOXjGAC5KlieJHkZhoPgard12TbvPbouq7Ur0BhpseldFgIVfBwlEHv08h-6aPrW-t88xWnMoihmnkp21Eob3GTLVtey3WRAs60P2daHbO9DNn9O030V_gIKLoU-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140827782</pqid></control><display><type>article</type><title>Defect Engineering in CuS1‐x Nanoflowers Enables Low‐Overpotential and Long‐Cycle‐Life of Lithium‐Oxygen Batteries</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Feng, Juanjuan ; Abbas, Adeel ; Zhao, Lingwen ; Sun, Hao ; Li, Zhihao ; Wang, Chunlei ; Wang, Hongchao</creator><creatorcontrib>Feng, Juanjuan ; Abbas, Adeel ; Zhao, Lingwen ; Sun, Hao ; Li, Zhihao ; Wang, Chunlei ; Wang, Hongchao</creatorcontrib><description>The defect engineering is essential for the development of efficient cathode catalysts for lithium‐oxygen batteries. Herein, CuS1‐x nanoflowers are fabricated by microwave hydrothermal method. Through theoretical and experimental analysis, the S vacancies are observed, which result in augmented charge around Cu, improved adsorption of LiO2, and reduced overpotential. On the one hand, the generated electronic defects cause the Fermi level to shift toward the conduction band, which enhances the electronic conductivity and ion transfer. On the other hand, the increased S vacancies provide a large number of Cu active sites, which increase the charge transfer from Cu to LiO2, which improves the stability of the intermediate adsorption. Interactively, CuS1‐x catalyst obtains a capacity of 23,227 mAh g−1 and a cycle life of 225 at 500 mA g−1. This work will be helpful for obtaining an efficient cathode catalyst by providing a deep understanding of vacancy modulation in advanced catalysts. CuS nanoflowers consisting of 2D nanosheets with S vacancies are successfully synthesized by microwave hydrothermal method. Theoretical and experiments demonstrate the introduction of sulfur vacancies achieves charge redistribution and the CuS1‐x nanoflowers have excellent electrocatalytic performance as cathode catalysts in lithium‐oxygen batteries.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202406081</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Catalysts ; Cathodes ; Charge transfer ; Conduction bands ; CuS1‐x nanoflowers ; Defects ; Lithium ; Li‐O2 batteries ; Oxygen ; sulfur vacancies</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-09, Vol.20 (49), p.e2406081-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8731-9986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202406081$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202406081$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Feng, Juanjuan</creatorcontrib><creatorcontrib>Abbas, Adeel</creatorcontrib><creatorcontrib>Zhao, Lingwen</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><creatorcontrib>Li, Zhihao</creatorcontrib><creatorcontrib>Wang, Chunlei</creatorcontrib><creatorcontrib>Wang, Hongchao</creatorcontrib><title>Defect Engineering in CuS1‐x Nanoflowers Enables Low‐Overpotential and Long‐Cycle‐Life of Lithium‐Oxygen Batteries</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>The defect engineering is essential for the development of efficient cathode catalysts for lithium‐oxygen batteries. Herein, CuS1‐x nanoflowers are fabricated by microwave hydrothermal method. Through theoretical and experimental analysis, the S vacancies are observed, which result in augmented charge around Cu, improved adsorption of LiO2, and reduced overpotential. On the one hand, the generated electronic defects cause the Fermi level to shift toward the conduction band, which enhances the electronic conductivity and ion transfer. On the other hand, the increased S vacancies provide a large number of Cu active sites, which increase the charge transfer from Cu to LiO2, which improves the stability of the intermediate adsorption. Interactively, CuS1‐x catalyst obtains a capacity of 23,227 mAh g−1 and a cycle life of 225 at 500 mA g−1. This work will be helpful for obtaining an efficient cathode catalyst by providing a deep understanding of vacancy modulation in advanced catalysts. CuS nanoflowers consisting of 2D nanosheets with S vacancies are successfully synthesized by microwave hydrothermal method. Theoretical and experiments demonstrate the introduction of sulfur vacancies achieves charge redistribution and the CuS1‐x nanoflowers have excellent electrocatalytic performance as cathode catalysts in lithium‐oxygen batteries.</description><subject>Adsorption</subject><subject>Catalysts</subject><subject>Cathodes</subject><subject>Charge transfer</subject><subject>Conduction bands</subject><subject>CuS1‐x nanoflowers</subject><subject>Defects</subject><subject>Lithium</subject><subject>Li‐O2 batteries</subject><subject>Oxygen</subject><subject>sulfur vacancies</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkbtOwzAUhiMEElBYmS2xsLT4OK6TjFDKRQp0KHvkJMfBleOUOKGtxMAj8Iw8Ca6KOjCdy_-di_QHwQXQEVDKrl1tzIhRxqmgMRwEJyAgHIqYJYf7HOhxcOrcgtIQGI9Ogs87VFh0ZGorbRFbbSuiLZn0c_j5-l6TF2kbZZoVts4zMjfoSNqsvDb7wHbZdGg7LQ2RtvR9W3lhsikM-phqhaRRJNXdm-7r7ch6U6Elt7Lr_CV0Z8GRksbh-V8cBPP76evkcZjOHp4mN-lwCYmAITCIIyFAYcKLWCiZ85xDiUVZynEhcxmqSEGCpRgXXOXjGAC5KlieJHkZhoPgard12TbvPbouq7Ur0BhpseldFgIVfBwlEHv08h-6aPrW-t88xWnMoihmnkp21Eob3GTLVtey3WRAs60P2daHbO9DNn9O030V_gIKLoU-</recordid><startdate>20240917</startdate><enddate>20240917</enddate><creator>Feng, Juanjuan</creator><creator>Abbas, Adeel</creator><creator>Zhao, Lingwen</creator><creator>Sun, Hao</creator><creator>Li, Zhihao</creator><creator>Wang, Chunlei</creator><creator>Wang, Hongchao</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8731-9986</orcidid></search><sort><creationdate>20240917</creationdate><title>Defect Engineering in CuS1‐x Nanoflowers Enables Low‐Overpotential and Long‐Cycle‐Life of Lithium‐Oxygen Batteries</title><author>Feng, Juanjuan ; Abbas, Adeel ; Zhao, Lingwen ; Sun, Hao ; Li, Zhihao ; Wang, Chunlei ; Wang, Hongchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1961-12187661fe94c86fab4b41decdda5caba3f7f19ed65c4fb5811e4fc2b99bd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Catalysts</topic><topic>Cathodes</topic><topic>Charge transfer</topic><topic>Conduction bands</topic><topic>CuS1‐x nanoflowers</topic><topic>Defects</topic><topic>Lithium</topic><topic>Li‐O2 batteries</topic><topic>Oxygen</topic><topic>sulfur vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Juanjuan</creatorcontrib><creatorcontrib>Abbas, Adeel</creatorcontrib><creatorcontrib>Zhao, Lingwen</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><creatorcontrib>Li, Zhihao</creatorcontrib><creatorcontrib>Wang, Chunlei</creatorcontrib><creatorcontrib>Wang, Hongchao</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Juanjuan</au><au>Abbas, Adeel</au><au>Zhao, Lingwen</au><au>Sun, Hao</au><au>Li, Zhihao</au><au>Wang, Chunlei</au><au>Wang, Hongchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect Engineering in CuS1‐x Nanoflowers Enables Low‐Overpotential and Long‐Cycle‐Life of Lithium‐Oxygen Batteries</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-09-17</date><risdate>2024</risdate><volume>20</volume><issue>49</issue><spage>e2406081</spage><epage>n/a</epage><pages>e2406081-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>The defect engineering is essential for the development of efficient cathode catalysts for lithium‐oxygen batteries. Herein, CuS1‐x nanoflowers are fabricated by microwave hydrothermal method. Through theoretical and experimental analysis, the S vacancies are observed, which result in augmented charge around Cu, improved adsorption of LiO2, and reduced overpotential. On the one hand, the generated electronic defects cause the Fermi level to shift toward the conduction band, which enhances the electronic conductivity and ion transfer. On the other hand, the increased S vacancies provide a large number of Cu active sites, which increase the charge transfer from Cu to LiO2, which improves the stability of the intermediate adsorption. Interactively, CuS1‐x catalyst obtains a capacity of 23,227 mAh g−1 and a cycle life of 225 at 500 mA g−1. This work will be helpful for obtaining an efficient cathode catalyst by providing a deep understanding of vacancy modulation in advanced catalysts. CuS nanoflowers consisting of 2D nanosheets with S vacancies are successfully synthesized by microwave hydrothermal method. Theoretical and experiments demonstrate the introduction of sulfur vacancies achieves charge redistribution and the CuS1‐x nanoflowers have excellent electrocatalytic performance as cathode catalysts in lithium‐oxygen batteries.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202406081</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8731-9986</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-09, Vol.20 (49), p.e2406081-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3106457918
source Wiley Online Library - AutoHoldings Journals
subjects Adsorption
Catalysts
Cathodes
Charge transfer
Conduction bands
CuS1‐x nanoflowers
Defects
Lithium
Li‐O2 batteries
Oxygen
sulfur vacancies
title Defect Engineering in CuS1‐x Nanoflowers Enables Low‐Overpotential and Long‐Cycle‐Life of Lithium‐Oxygen Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20Engineering%20in%20CuS1%E2%80%90x%20Nanoflowers%20Enables%20Low%E2%80%90Overpotential%20and%20Long%E2%80%90Cycle%E2%80%90Life%20of%20Lithium%E2%80%90Oxygen%20Batteries&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Feng,%20Juanjuan&rft.date=2024-09-17&rft.volume=20&rft.issue=49&rft.spage=e2406081&rft.epage=n/a&rft.pages=e2406081-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202406081&rft_dat=%3Cproquest_wiley%3E3140827782%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3140827782&rft_id=info:pmid/&rfr_iscdi=true