Flexible All‐Inorganic Thermoelectric Yarns

Achieving both formability and functionality in thermoelectric materials remains a significant challenge due to their inherent brittleness. Previous approaches, such as polymer infiltration, often compromise thermoelectric efficiency, underscoring the need for flexible, all‐inorganic alternatives. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-11, Vol.36 (47), p.e2408320-n/a
Hauptverfasser: Jang, Hanhwi, Ahn, Junseong, Jeong, Yongrok, Ha, Ji‐Hwan, Jeong, Jun‐Ho, Oh, Min‐Wook, Park, Inkyu, Jung, Yeon Sik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 47
container_start_page e2408320
container_title Advanced materials (Weinheim)
container_volume 36
creator Jang, Hanhwi
Ahn, Junseong
Jeong, Yongrok
Ha, Ji‐Hwan
Jeong, Jun‐Ho
Oh, Min‐Wook
Park, Inkyu
Jung, Yeon Sik
description Achieving both formability and functionality in thermoelectric materials remains a significant challenge due to their inherent brittleness. Previous approaches, such as polymer infiltration, often compromise thermoelectric efficiency, underscoring the need for flexible, all‐inorganic alternatives. This study demonstrates that the extreme brittleness of thermoelectric bismuth telluride (Bi2Te3) bulk compounds can be overcome by harnessing the nanoscale flexibility of Bi2Te3 nanoribbons and twisting them into a yarn structure. The resulting Bi2Te3 yarn, with a Seebeck coefficient of −126.6 µV K−1, exhibits remarkable deformability, enduring extreme bending curvatures (down to 0.5 mm−1) and tensile strains of ≈5% through over 1000 cycles without significant resistance change. This breakthrough allows the yarn to be seamlessly integrated into various applications—wound around metallic pipes, embedded within life jackets, or woven into garments—demonstrating unprecedented adaptability and durability. Moreover, a simple 4‐pair thermoelectric generator comprising Bi2Te3 yarns and metallic wires generates a maximum output voltage of 67.4 mV, substantiating the effectiveness of thermoelectric yarns in waste heat harvesting. These advances not only challenge the traditional limitations posed by the brittleness of thermoelectric materials but also open new avenues for their application in wearable and structural electronics. Advancing the development of shape‐conformable and mechanically durable thermoelectric materials is essential for wearable electronics. It is demonstrated that flexible all‐inorganic thermoelectric yarn can be produced through the interlayered deposition and thermal annealing of target materials, creating flexible semiconductors with versatile elements. This innovation paves the way for incorporating such yarns into everyday apparel, including sweaters and life jackets, functioning as thermoelectric generators and facilitating self‐powered wearable devices.
doi_str_mv 10.1002/adma.202408320
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3106196213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3106196213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2580-1f8d60b26c4e1740ab6d46a8db0188a44031f081a6bd1cab60bc725217e8733b3</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EoqWwMqJKLCwp1z9xnDEqFCoVsZSByXIcB1I5SbEbQTcegWfkSXDVAhIL09XVPffo04fQKYYRBiCXqqjViABhICiBPdTHMcERgzTeR31IaRylnIkeOvJ-AQApB36IejQlIhaA-yiaWPNW5dYMM2s_3z-mTeueVFPp4fzZuLo11uiVC-ujco0_Rgelst6c7OYAPUyu5-PbaHZ_Mx1ns0iToI1wKQoOOeGaGZwwUDkvGFeiyAELoRgDiksQWPG8wDpcIdcJCcETIxJKczpAF1vv0rUvnfErWVdeG2tVY9rOS4qB45QTTAN6_gddtJ1rQrpAURJjQWBDjbaUdq33zpRy6apaubXEIDdFyk2R8qfI8HC203Z5bYof_Lu5AKRb4LWyZv2PTmZXd9mv_AuLgn1T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132518203</pqid></control><display><type>article</type><title>Flexible All‐Inorganic Thermoelectric Yarns</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jang, Hanhwi ; Ahn, Junseong ; Jeong, Yongrok ; Ha, Ji‐Hwan ; Jeong, Jun‐Ho ; Oh, Min‐Wook ; Park, Inkyu ; Jung, Yeon Sik</creator><creatorcontrib>Jang, Hanhwi ; Ahn, Junseong ; Jeong, Yongrok ; Ha, Ji‐Hwan ; Jeong, Jun‐Ho ; Oh, Min‐Wook ; Park, Inkyu ; Jung, Yeon Sik</creatorcontrib><description>Achieving both formability and functionality in thermoelectric materials remains a significant challenge due to their inherent brittleness. Previous approaches, such as polymer infiltration, often compromise thermoelectric efficiency, underscoring the need for flexible, all‐inorganic alternatives. This study demonstrates that the extreme brittleness of thermoelectric bismuth telluride (Bi2Te3) bulk compounds can be overcome by harnessing the nanoscale flexibility of Bi2Te3 nanoribbons and twisting them into a yarn structure. The resulting Bi2Te3 yarn, with a Seebeck coefficient of −126.6 µV K−1, exhibits remarkable deformability, enduring extreme bending curvatures (down to 0.5 mm−1) and tensile strains of ≈5% through over 1000 cycles without significant resistance change. This breakthrough allows the yarn to be seamlessly integrated into various applications—wound around metallic pipes, embedded within life jackets, or woven into garments—demonstrating unprecedented adaptability and durability. Moreover, a simple 4‐pair thermoelectric generator comprising Bi2Te3 yarns and metallic wires generates a maximum output voltage of 67.4 mV, substantiating the effectiveness of thermoelectric yarns in waste heat harvesting. These advances not only challenge the traditional limitations posed by the brittleness of thermoelectric materials but also open new avenues for their application in wearable and structural electronics. Advancing the development of shape‐conformable and mechanically durable thermoelectric materials is essential for wearable electronics. It is demonstrated that flexible all‐inorganic thermoelectric yarn can be produced through the interlayered deposition and thermal annealing of target materials, creating flexible semiconductors with versatile elements. This innovation paves the way for incorporating such yarns into everyday apparel, including sweaters and life jackets, functioning as thermoelectric generators and facilitating self‐powered wearable devices.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202408320</identifier><identifier>PMID: 39285801</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>all‐inorganic ; Bismuth tellurides ; Brittleness ; flexible ; Formability ; mechanical properties ; Nanoribbons ; Seebeck effect ; Thermoelectric generators ; Thermoelectric materials ; thermoelectrics ; Yarns</subject><ispartof>Advanced materials (Weinheim), 2024-11, Vol.36 (47), p.e2408320-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2580-1f8d60b26c4e1740ab6d46a8db0188a44031f081a6bd1cab60bc725217e8733b3</cites><orcidid>0000-0002-7709-8347 ; 0000-0003-1628-4522 ; 0000-0002-4090-5440</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202408320$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202408320$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39285801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jang, Hanhwi</creatorcontrib><creatorcontrib>Ahn, Junseong</creatorcontrib><creatorcontrib>Jeong, Yongrok</creatorcontrib><creatorcontrib>Ha, Ji‐Hwan</creatorcontrib><creatorcontrib>Jeong, Jun‐Ho</creatorcontrib><creatorcontrib>Oh, Min‐Wook</creatorcontrib><creatorcontrib>Park, Inkyu</creatorcontrib><creatorcontrib>Jung, Yeon Sik</creatorcontrib><title>Flexible All‐Inorganic Thermoelectric Yarns</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Achieving both formability and functionality in thermoelectric materials remains a significant challenge due to their inherent brittleness. Previous approaches, such as polymer infiltration, often compromise thermoelectric efficiency, underscoring the need for flexible, all‐inorganic alternatives. This study demonstrates that the extreme brittleness of thermoelectric bismuth telluride (Bi2Te3) bulk compounds can be overcome by harnessing the nanoscale flexibility of Bi2Te3 nanoribbons and twisting them into a yarn structure. The resulting Bi2Te3 yarn, with a Seebeck coefficient of −126.6 µV K−1, exhibits remarkable deformability, enduring extreme bending curvatures (down to 0.5 mm−1) and tensile strains of ≈5% through over 1000 cycles without significant resistance change. This breakthrough allows the yarn to be seamlessly integrated into various applications—wound around metallic pipes, embedded within life jackets, or woven into garments—demonstrating unprecedented adaptability and durability. Moreover, a simple 4‐pair thermoelectric generator comprising Bi2Te3 yarns and metallic wires generates a maximum output voltage of 67.4 mV, substantiating the effectiveness of thermoelectric yarns in waste heat harvesting. These advances not only challenge the traditional limitations posed by the brittleness of thermoelectric materials but also open new avenues for their application in wearable and structural electronics. Advancing the development of shape‐conformable and mechanically durable thermoelectric materials is essential for wearable electronics. It is demonstrated that flexible all‐inorganic thermoelectric yarn can be produced through the interlayered deposition and thermal annealing of target materials, creating flexible semiconductors with versatile elements. This innovation paves the way for incorporating such yarns into everyday apparel, including sweaters and life jackets, functioning as thermoelectric generators and facilitating self‐powered wearable devices.</description><subject>all‐inorganic</subject><subject>Bismuth tellurides</subject><subject>Brittleness</subject><subject>flexible</subject><subject>Formability</subject><subject>mechanical properties</subject><subject>Nanoribbons</subject><subject>Seebeck effect</subject><subject>Thermoelectric generators</subject><subject>Thermoelectric materials</subject><subject>thermoelectrics</subject><subject>Yarns</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EoqWwMqJKLCwp1z9xnDEqFCoVsZSByXIcB1I5SbEbQTcegWfkSXDVAhIL09XVPffo04fQKYYRBiCXqqjViABhICiBPdTHMcERgzTeR31IaRylnIkeOvJ-AQApB36IejQlIhaA-yiaWPNW5dYMM2s_3z-mTeueVFPp4fzZuLo11uiVC-ujco0_Rgelst6c7OYAPUyu5-PbaHZ_Mx1ns0iToI1wKQoOOeGaGZwwUDkvGFeiyAELoRgDiksQWPG8wDpcIdcJCcETIxJKczpAF1vv0rUvnfErWVdeG2tVY9rOS4qB45QTTAN6_gddtJ1rQrpAURJjQWBDjbaUdq33zpRy6apaubXEIDdFyk2R8qfI8HC203Z5bYof_Lu5AKRb4LWyZv2PTmZXd9mv_AuLgn1T</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Jang, Hanhwi</creator><creator>Ahn, Junseong</creator><creator>Jeong, Yongrok</creator><creator>Ha, Ji‐Hwan</creator><creator>Jeong, Jun‐Ho</creator><creator>Oh, Min‐Wook</creator><creator>Park, Inkyu</creator><creator>Jung, Yeon Sik</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7709-8347</orcidid><orcidid>https://orcid.org/0000-0003-1628-4522</orcidid><orcidid>https://orcid.org/0000-0002-4090-5440</orcidid></search><sort><creationdate>20241101</creationdate><title>Flexible All‐Inorganic Thermoelectric Yarns</title><author>Jang, Hanhwi ; Ahn, Junseong ; Jeong, Yongrok ; Ha, Ji‐Hwan ; Jeong, Jun‐Ho ; Oh, Min‐Wook ; Park, Inkyu ; Jung, Yeon Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2580-1f8d60b26c4e1740ab6d46a8db0188a44031f081a6bd1cab60bc725217e8733b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>all‐inorganic</topic><topic>Bismuth tellurides</topic><topic>Brittleness</topic><topic>flexible</topic><topic>Formability</topic><topic>mechanical properties</topic><topic>Nanoribbons</topic><topic>Seebeck effect</topic><topic>Thermoelectric generators</topic><topic>Thermoelectric materials</topic><topic>thermoelectrics</topic><topic>Yarns</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Hanhwi</creatorcontrib><creatorcontrib>Ahn, Junseong</creatorcontrib><creatorcontrib>Jeong, Yongrok</creatorcontrib><creatorcontrib>Ha, Ji‐Hwan</creatorcontrib><creatorcontrib>Jeong, Jun‐Ho</creatorcontrib><creatorcontrib>Oh, Min‐Wook</creatorcontrib><creatorcontrib>Park, Inkyu</creatorcontrib><creatorcontrib>Jung, Yeon Sik</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Hanhwi</au><au>Ahn, Junseong</au><au>Jeong, Yongrok</au><au>Ha, Ji‐Hwan</au><au>Jeong, Jun‐Ho</au><au>Oh, Min‐Wook</au><au>Park, Inkyu</au><au>Jung, Yeon Sik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible All‐Inorganic Thermoelectric Yarns</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>36</volume><issue>47</issue><spage>e2408320</spage><epage>n/a</epage><pages>e2408320-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Achieving both formability and functionality in thermoelectric materials remains a significant challenge due to their inherent brittleness. Previous approaches, such as polymer infiltration, often compromise thermoelectric efficiency, underscoring the need for flexible, all‐inorganic alternatives. This study demonstrates that the extreme brittleness of thermoelectric bismuth telluride (Bi2Te3) bulk compounds can be overcome by harnessing the nanoscale flexibility of Bi2Te3 nanoribbons and twisting them into a yarn structure. The resulting Bi2Te3 yarn, with a Seebeck coefficient of −126.6 µV K−1, exhibits remarkable deformability, enduring extreme bending curvatures (down to 0.5 mm−1) and tensile strains of ≈5% through over 1000 cycles without significant resistance change. This breakthrough allows the yarn to be seamlessly integrated into various applications—wound around metallic pipes, embedded within life jackets, or woven into garments—demonstrating unprecedented adaptability and durability. Moreover, a simple 4‐pair thermoelectric generator comprising Bi2Te3 yarns and metallic wires generates a maximum output voltage of 67.4 mV, substantiating the effectiveness of thermoelectric yarns in waste heat harvesting. These advances not only challenge the traditional limitations posed by the brittleness of thermoelectric materials but also open new avenues for their application in wearable and structural electronics. Advancing the development of shape‐conformable and mechanically durable thermoelectric materials is essential for wearable electronics. It is demonstrated that flexible all‐inorganic thermoelectric yarn can be produced through the interlayered deposition and thermal annealing of target materials, creating flexible semiconductors with versatile elements. This innovation paves the way for incorporating such yarns into everyday apparel, including sweaters and life jackets, functioning as thermoelectric generators and facilitating self‐powered wearable devices.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39285801</pmid><doi>10.1002/adma.202408320</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7709-8347</orcidid><orcidid>https://orcid.org/0000-0003-1628-4522</orcidid><orcidid>https://orcid.org/0000-0002-4090-5440</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-11, Vol.36 (47), p.e2408320-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3106196213
source Wiley Online Library Journals Frontfile Complete
subjects all‐inorganic
Bismuth tellurides
Brittleness
flexible
Formability
mechanical properties
Nanoribbons
Seebeck effect
Thermoelectric generators
Thermoelectric materials
thermoelectrics
Yarns
title Flexible All‐Inorganic Thermoelectric Yarns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20All%E2%80%90Inorganic%20Thermoelectric%20Yarns&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Jang,%20Hanhwi&rft.date=2024-11-01&rft.volume=36&rft.issue=47&rft.spage=e2408320&rft.epage=n/a&rft.pages=e2408320-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202408320&rft_dat=%3Cproquest_cross%3E3106196213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132518203&rft_id=info:pmid/39285801&rfr_iscdi=true