Implications of using simplified finite element meshes to identify material parameters of articular cartilage

•Finite element (FE) modeling can assist in deriving cartilage material parameters.•2D-axisymmetric and flat 3D models simplify complex cartilage geometry.•Porous viscohyperelastic material parameters vary with mesh simplification.•Changes in material parameters translate to changes in computed tiss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical engineering & physics 2024-09, Vol.131, p.104200, Article 104200
Hauptverfasser: Szabo, Nicole E., Johnson, Joshua E., Brouillette, Marc J., Goetz, Jessica E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104200
container_title Medical engineering & physics
container_volume 131
creator Szabo, Nicole E.
Johnson, Joshua E.
Brouillette, Marc J.
Goetz, Jessica E.
description •Finite element (FE) modeling can assist in deriving cartilage material parameters.•2D-axisymmetric and flat 3D models simplify complex cartilage geometry.•Porous viscohyperelastic material parameters vary with mesh simplification.•Changes in material parameters translate to changes in computed tissue mechanics. The objective of this work was to determine the effects of using simplified finite element (FE) mesh geometry in the process of performing reverse iterative fitting to estimate cartilage material parameters from in situ indentation testing. Six bovine tibial osteochondral explants were indented with sequential 5 % step-strains followed by a 600 s hold while relaxation force was measured. Three sets of porous viscohyperelastic material parameters were estimated for each specimen using reverse iterative fitting of the indentation test with (1) 2D axisymmetric, (2) 3D idealized, and (3) 3D specimen-specific FE meshes. Variable material parameters were identified using the three different meshes, and there were no systematic differences, correlation to basic geometric features, nor distinct patterns of variation based on the type of mesh used. Implementing the three material parameter sets in a separate 3D FE model of 40 % compressive strain produced differences in von Mises stresses and pore pressures up to 25 % and 50 %, respectively. Accurate material parameters are crucial in any FE model, and parameter differences influenced by idealized assumptions in initial material property determination have the potential to alter subsequent FE models in unpredictable ways and hinder the interpretation of their results.
doi_str_mv 10.1016/j.medengphy.2024.104200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3106045531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1350453324001012</els_id><sourcerecordid>3106045531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-793f7cab6f547fc42fbe0ccfd41c310855f8a3e5e27e07370c54bf9f9bc2762c3</originalsourceid><addsrcrecordid>eNqFkE1v3CAQhlGVKknT_IWGYy7ejg2Y3WMU5UuK1Et7RhgPm1kZ2wFcaf992Gyaa08Mo2fegYexqxpWNdTtz90qYI_jdn7ZrxpoZOnKBuALO6_XWlQSBJyUWiiopBLijH1LaQcAUrbilJ2JTbOWrVTnLDyFeSBnM01j4pPnS6JxyxMd2p6w555GyshxwIBj5gHTCyaeJ07lAZn8ngebMZId-GyjDVgu70k2ZnLLYCN3h3KwW_zOvno7JLz8OC_Yn_u737eP1fOvh6fbm-fKiVrnSm-E1852rVdSeycb3yE453tZFwDWSvm1Faiw0QhaaHBKdn7jN51rdNs4ccGuj7lznF4XTNkESg6HwY44LcmUkBakUqIuqD6iLk4pRfRmjhRs3JsazMG12ZlP1-bg2hxdl8kfH0uWrhCfc__kFuDmCGD56l_CaJIjHB32FNFl00_03yVviaKW7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106045531</pqid></control><display><type>article</type><title>Implications of using simplified finite element meshes to identify material parameters of articular cartilage</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Szabo, Nicole E. ; Johnson, Joshua E. ; Brouillette, Marc J. ; Goetz, Jessica E.</creator><creatorcontrib>Szabo, Nicole E. ; Johnson, Joshua E. ; Brouillette, Marc J. ; Goetz, Jessica E.</creatorcontrib><description>•Finite element (FE) modeling can assist in deriving cartilage material parameters.•2D-axisymmetric and flat 3D models simplify complex cartilage geometry.•Porous viscohyperelastic material parameters vary with mesh simplification.•Changes in material parameters translate to changes in computed tissue mechanics. The objective of this work was to determine the effects of using simplified finite element (FE) mesh geometry in the process of performing reverse iterative fitting to estimate cartilage material parameters from in situ indentation testing. Six bovine tibial osteochondral explants were indented with sequential 5 % step-strains followed by a 600 s hold while relaxation force was measured. Three sets of porous viscohyperelastic material parameters were estimated for each specimen using reverse iterative fitting of the indentation test with (1) 2D axisymmetric, (2) 3D idealized, and (3) 3D specimen-specific FE meshes. Variable material parameters were identified using the three different meshes, and there were no systematic differences, correlation to basic geometric features, nor distinct patterns of variation based on the type of mesh used. Implementing the three material parameter sets in a separate 3D FE model of 40 % compressive strain produced differences in von Mises stresses and pore pressures up to 25 % and 50 %, respectively. Accurate material parameters are crucial in any FE model, and parameter differences influenced by idealized assumptions in initial material property determination have the potential to alter subsequent FE models in unpredictable ways and hinder the interpretation of their results.</description><identifier>ISSN: 1350-4533</identifier><identifier>ISSN: 1873-4030</identifier><identifier>EISSN: 1873-4030</identifier><identifier>DOI: 10.1016/j.medengphy.2024.104200</identifier><identifier>PMID: 39284645</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Articular cartilage ; Biomechanical Phenomena ; Cartilage, Articular - physiology ; Cattle ; Elasticity ; Finite Element Analysis ; In situ indentation ; Material properties ; Materials Testing ; Mechanics ; Models, Biological ; Porosity ; Stress, Mechanical</subject><ispartof>Medical engineering &amp; physics, 2024-09, Vol.131, p.104200, Article 104200</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-793f7cab6f547fc42fbe0ccfd41c310855f8a3e5e27e07370c54bf9f9bc2762c3</cites><orcidid>0000-0002-8049-4105 ; 0000-0002-7197-5978 ; 0000-0001-7206-8627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1350453324001012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39284645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Szabo, Nicole E.</creatorcontrib><creatorcontrib>Johnson, Joshua E.</creatorcontrib><creatorcontrib>Brouillette, Marc J.</creatorcontrib><creatorcontrib>Goetz, Jessica E.</creatorcontrib><title>Implications of using simplified finite element meshes to identify material parameters of articular cartilage</title><title>Medical engineering &amp; physics</title><addtitle>Med Eng Phys</addtitle><description>•Finite element (FE) modeling can assist in deriving cartilage material parameters.•2D-axisymmetric and flat 3D models simplify complex cartilage geometry.•Porous viscohyperelastic material parameters vary with mesh simplification.•Changes in material parameters translate to changes in computed tissue mechanics. The objective of this work was to determine the effects of using simplified finite element (FE) mesh geometry in the process of performing reverse iterative fitting to estimate cartilage material parameters from in situ indentation testing. Six bovine tibial osteochondral explants were indented with sequential 5 % step-strains followed by a 600 s hold while relaxation force was measured. Three sets of porous viscohyperelastic material parameters were estimated for each specimen using reverse iterative fitting of the indentation test with (1) 2D axisymmetric, (2) 3D idealized, and (3) 3D specimen-specific FE meshes. Variable material parameters were identified using the three different meshes, and there were no systematic differences, correlation to basic geometric features, nor distinct patterns of variation based on the type of mesh used. Implementing the three material parameter sets in a separate 3D FE model of 40 % compressive strain produced differences in von Mises stresses and pore pressures up to 25 % and 50 %, respectively. Accurate material parameters are crucial in any FE model, and parameter differences influenced by idealized assumptions in initial material property determination have the potential to alter subsequent FE models in unpredictable ways and hinder the interpretation of their results.</description><subject>Animals</subject><subject>Articular cartilage</subject><subject>Biomechanical Phenomena</subject><subject>Cartilage, Articular - physiology</subject><subject>Cattle</subject><subject>Elasticity</subject><subject>Finite Element Analysis</subject><subject>In situ indentation</subject><subject>Material properties</subject><subject>Materials Testing</subject><subject>Mechanics</subject><subject>Models, Biological</subject><subject>Porosity</subject><subject>Stress, Mechanical</subject><issn>1350-4533</issn><issn>1873-4030</issn><issn>1873-4030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v3CAQhlGVKknT_IWGYy7ejg2Y3WMU5UuK1Et7RhgPm1kZ2wFcaf992Gyaa08Mo2fegYexqxpWNdTtz90qYI_jdn7ZrxpoZOnKBuALO6_XWlQSBJyUWiiopBLijH1LaQcAUrbilJ2JTbOWrVTnLDyFeSBnM01j4pPnS6JxyxMd2p6w555GyshxwIBj5gHTCyaeJ07lAZn8ngebMZId-GyjDVgu70k2ZnLLYCN3h3KwW_zOvno7JLz8OC_Yn_u737eP1fOvh6fbm-fKiVrnSm-E1852rVdSeycb3yE453tZFwDWSvm1Faiw0QhaaHBKdn7jN51rdNs4ccGuj7lznF4XTNkESg6HwY44LcmUkBakUqIuqD6iLk4pRfRmjhRs3JsazMG12ZlP1-bg2hxdl8kfH0uWrhCfc__kFuDmCGD56l_CaJIjHB32FNFl00_03yVviaKW7A</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Szabo, Nicole E.</creator><creator>Johnson, Joshua E.</creator><creator>Brouillette, Marc J.</creator><creator>Goetz, Jessica E.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8049-4105</orcidid><orcidid>https://orcid.org/0000-0002-7197-5978</orcidid><orcidid>https://orcid.org/0000-0001-7206-8627</orcidid></search><sort><creationdate>202409</creationdate><title>Implications of using simplified finite element meshes to identify material parameters of articular cartilage</title><author>Szabo, Nicole E. ; Johnson, Joshua E. ; Brouillette, Marc J. ; Goetz, Jessica E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-793f7cab6f547fc42fbe0ccfd41c310855f8a3e5e27e07370c54bf9f9bc2762c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Articular cartilage</topic><topic>Biomechanical Phenomena</topic><topic>Cartilage, Articular - physiology</topic><topic>Cattle</topic><topic>Elasticity</topic><topic>Finite Element Analysis</topic><topic>In situ indentation</topic><topic>Material properties</topic><topic>Materials Testing</topic><topic>Mechanics</topic><topic>Models, Biological</topic><topic>Porosity</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szabo, Nicole E.</creatorcontrib><creatorcontrib>Johnson, Joshua E.</creatorcontrib><creatorcontrib>Brouillette, Marc J.</creatorcontrib><creatorcontrib>Goetz, Jessica E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical engineering &amp; physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szabo, Nicole E.</au><au>Johnson, Joshua E.</au><au>Brouillette, Marc J.</au><au>Goetz, Jessica E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implications of using simplified finite element meshes to identify material parameters of articular cartilage</atitle><jtitle>Medical engineering &amp; physics</jtitle><addtitle>Med Eng Phys</addtitle><date>2024-09</date><risdate>2024</risdate><volume>131</volume><spage>104200</spage><pages>104200-</pages><artnum>104200</artnum><issn>1350-4533</issn><issn>1873-4030</issn><eissn>1873-4030</eissn><abstract>•Finite element (FE) modeling can assist in deriving cartilage material parameters.•2D-axisymmetric and flat 3D models simplify complex cartilage geometry.•Porous viscohyperelastic material parameters vary with mesh simplification.•Changes in material parameters translate to changes in computed tissue mechanics. The objective of this work was to determine the effects of using simplified finite element (FE) mesh geometry in the process of performing reverse iterative fitting to estimate cartilage material parameters from in situ indentation testing. Six bovine tibial osteochondral explants were indented with sequential 5 % step-strains followed by a 600 s hold while relaxation force was measured. Three sets of porous viscohyperelastic material parameters were estimated for each specimen using reverse iterative fitting of the indentation test with (1) 2D axisymmetric, (2) 3D idealized, and (3) 3D specimen-specific FE meshes. Variable material parameters were identified using the three different meshes, and there were no systematic differences, correlation to basic geometric features, nor distinct patterns of variation based on the type of mesh used. Implementing the three material parameter sets in a separate 3D FE model of 40 % compressive strain produced differences in von Mises stresses and pore pressures up to 25 % and 50 %, respectively. Accurate material parameters are crucial in any FE model, and parameter differences influenced by idealized assumptions in initial material property determination have the potential to alter subsequent FE models in unpredictable ways and hinder the interpretation of their results.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39284645</pmid><doi>10.1016/j.medengphy.2024.104200</doi><orcidid>https://orcid.org/0000-0002-8049-4105</orcidid><orcidid>https://orcid.org/0000-0002-7197-5978</orcidid><orcidid>https://orcid.org/0000-0001-7206-8627</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1350-4533
ispartof Medical engineering & physics, 2024-09, Vol.131, p.104200, Article 104200
issn 1350-4533
1873-4030
1873-4030
language eng
recordid cdi_proquest_miscellaneous_3106045531
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Animals
Articular cartilage
Biomechanical Phenomena
Cartilage, Articular - physiology
Cattle
Elasticity
Finite Element Analysis
In situ indentation
Material properties
Materials Testing
Mechanics
Models, Biological
Porosity
Stress, Mechanical
title Implications of using simplified finite element meshes to identify material parameters of articular cartilage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T20%3A58%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implications%20of%20using%20simplified%20finite%20element%20meshes%20to%20identify%20material%20parameters%20of%20articular%20cartilage&rft.jtitle=Medical%20engineering%20&%20physics&rft.au=Szabo,%20Nicole%20E.&rft.date=2024-09&rft.volume=131&rft.spage=104200&rft.pages=104200-&rft.artnum=104200&rft.issn=1350-4533&rft.eissn=1873-4030&rft_id=info:doi/10.1016/j.medengphy.2024.104200&rft_dat=%3Cproquest_cross%3E3106045531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106045531&rft_id=info:pmid/39284645&rft_els_id=S1350453324001012&rfr_iscdi=true