Magnetic nanoparticles and possible synergies with cold atmospheric plasma for cancer treatment

The biomedical applications of magnetic nanoparticles (MNPs) have gained increasing attention due to their unique biological, chemical, and magnetic properties such as biocompatibility, chemical stability, and high magnetic susceptibility. However, several critical issues still remain that have sign...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2024-09, Vol.14 (4), p.2939-2951
Hauptverfasser: Dai, Xiaofeng, Dai, Yilin, Zheng, Yan, Lv, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2951
container_issue 4
container_start_page 2939
container_title RSC advances
container_volume 14
creator Dai, Xiaofeng
Dai, Yilin
Zheng, Yan
Lv, Yi
description The biomedical applications of magnetic nanoparticles (MNPs) have gained increasing attention due to their unique biological, chemical, and magnetic properties such as biocompatibility, chemical stability, and high magnetic susceptibility. However, several critical issues still remain that have significantly halted the clinical translation of these nanomaterials such as the relatively low therapeutic efficacy, hyperthermia resistance, and biosafety concerns. To identify innovative approaches possibly creating synergies with MNPs to resolve or mitigate these problems, we delineated the anti-cancer properties of MNPs and their existing onco-therapeutic portfolios, based on which we proposed cold atmospheric plasma (CAP) to be a possible synergizer of MNPs by enhancing free radical generation, reducing hyperthermia resistance, preventing MNP aggregation, and functioning as an innovative magnetic and light source for magnetothermal- and photo-therapies. Our insights on the possible facilitating role of CAP in translating MNPs for biomedical use may inspire fresh research directions that, once actualized, gain mutual benefits from both. The biomedical applications of magnetic nanoparticles (MNPs) have gained increasing attention due to their unique biological, chemical, and magnetic properties such as biocompatibility, chemical stability, and high magnetic susceptibility.
doi_str_mv 10.1039/d4ra03837a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3106037872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111404029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-108c0f56acd0d56f468aafd390aa04621bd6c31d6072f7d9e6e2b47de7e7dd783</originalsourceid><addsrcrecordid>eNpdkd1LHDEUxYNYVNSXvrcEfJHC2ptkNpl5kkX7BUqhtM_hbnJnd2QmmSazFv_7xq7davOSS84vJ_fmMPZawIUA1bz3VUJQtTK4x44kVHomQTf7z-pDdprzHZSl50JqccAOVSPrIqkjZm9xFWjqHA8Y4oiplD1ljsHzMebcLXvi-SFQWnXl-Fc3rbmLvec4DTGPa0rl6thjHpC3MXGHwVHiU6ICUJhO2KsW-0ynT_sx-_Hxw_erz7Obr5--XC1uZk6JepoJqB20c43Og5_rttI1YutVA4hlDimWXhfSazCyNb4hTXJZGU-GjPemVsfscus7bpYDeVeeTtjbMXUDpgcbsbMvldCt7SreWyFUIxoFxeH8ySHFnxvKkx267KjvMVDcZKsEaFCmNrKgZ_-hd3GTQpmvUEJUUIFsCvVuS7lUPjJRu-tGgH3Mzl5X3xZ_slsU-O3z_nfo36QK8GYLpOx26r_w1W8Z-qAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111404029</pqid></control><display><type>article</type><title>Magnetic nanoparticles and possible synergies with cold atmospheric plasma for cancer treatment</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Dai, Xiaofeng ; Dai, Yilin ; Zheng, Yan ; Lv, Yi</creator><creatorcontrib>Dai, Xiaofeng ; Dai, Yilin ; Zheng, Yan ; Lv, Yi</creatorcontrib><description>The biomedical applications of magnetic nanoparticles (MNPs) have gained increasing attention due to their unique biological, chemical, and magnetic properties such as biocompatibility, chemical stability, and high magnetic susceptibility. However, several critical issues still remain that have significantly halted the clinical translation of these nanomaterials such as the relatively low therapeutic efficacy, hyperthermia resistance, and biosafety concerns. To identify innovative approaches possibly creating synergies with MNPs to resolve or mitigate these problems, we delineated the anti-cancer properties of MNPs and their existing onco-therapeutic portfolios, based on which we proposed cold atmospheric plasma (CAP) to be a possible synergizer of MNPs by enhancing free radical generation, reducing hyperthermia resistance, preventing MNP aggregation, and functioning as an innovative magnetic and light source for magnetothermal- and photo-therapies. Our insights on the possible facilitating role of CAP in translating MNPs for biomedical use may inspire fresh research directions that, once actualized, gain mutual benefits from both. The biomedical applications of magnetic nanoparticles (MNPs) have gained increasing attention due to their unique biological, chemical, and magnetic properties such as biocompatibility, chemical stability, and high magnetic susceptibility.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d4ra03837a</identifier><identifier>PMID: 39282063</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biocompatibility ; Biological properties ; Biomedical materials ; Chemistry ; Cold treatment ; Free radicals ; Hyperthermia ; Light sources ; Low temperature resistance ; Magnetic permeability ; Magnetic properties ; Nanomaterials ; Nanoparticles</subject><ispartof>RSC advances, 2024-09, Vol.14 (4), p.2939-2951</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c318t-108c0f56acd0d56f468aafd390aa04621bd6c31d6072f7d9e6e2b47de7e7dd783</cites><orcidid>0000-0003-3636-6664 ; 0000-0001-5323-7886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391930/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391930/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39282063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dai, Xiaofeng</creatorcontrib><creatorcontrib>Dai, Yilin</creatorcontrib><creatorcontrib>Zheng, Yan</creatorcontrib><creatorcontrib>Lv, Yi</creatorcontrib><title>Magnetic nanoparticles and possible synergies with cold atmospheric plasma for cancer treatment</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>The biomedical applications of magnetic nanoparticles (MNPs) have gained increasing attention due to their unique biological, chemical, and magnetic properties such as biocompatibility, chemical stability, and high magnetic susceptibility. However, several critical issues still remain that have significantly halted the clinical translation of these nanomaterials such as the relatively low therapeutic efficacy, hyperthermia resistance, and biosafety concerns. To identify innovative approaches possibly creating synergies with MNPs to resolve or mitigate these problems, we delineated the anti-cancer properties of MNPs and their existing onco-therapeutic portfolios, based on which we proposed cold atmospheric plasma (CAP) to be a possible synergizer of MNPs by enhancing free radical generation, reducing hyperthermia resistance, preventing MNP aggregation, and functioning as an innovative magnetic and light source for magnetothermal- and photo-therapies. Our insights on the possible facilitating role of CAP in translating MNPs for biomedical use may inspire fresh research directions that, once actualized, gain mutual benefits from both. The biomedical applications of magnetic nanoparticles (MNPs) have gained increasing attention due to their unique biological, chemical, and magnetic properties such as biocompatibility, chemical stability, and high magnetic susceptibility.</description><subject>Biocompatibility</subject><subject>Biological properties</subject><subject>Biomedical materials</subject><subject>Chemistry</subject><subject>Cold treatment</subject><subject>Free radicals</subject><subject>Hyperthermia</subject><subject>Light sources</subject><subject>Low temperature resistance</subject><subject>Magnetic permeability</subject><subject>Magnetic properties</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkd1LHDEUxYNYVNSXvrcEfJHC2ptkNpl5kkX7BUqhtM_hbnJnd2QmmSazFv_7xq7davOSS84vJ_fmMPZawIUA1bz3VUJQtTK4x44kVHomQTf7z-pDdprzHZSl50JqccAOVSPrIqkjZm9xFWjqHA8Y4oiplD1ljsHzMebcLXvi-SFQWnXl-Fc3rbmLvec4DTGPa0rl6thjHpC3MXGHwVHiU6ICUJhO2KsW-0ynT_sx-_Hxw_erz7Obr5--XC1uZk6JepoJqB20c43Og5_rttI1YutVA4hlDimWXhfSazCyNb4hTXJZGU-GjPemVsfscus7bpYDeVeeTtjbMXUDpgcbsbMvldCt7SreWyFUIxoFxeH8ySHFnxvKkx267KjvMVDcZKsEaFCmNrKgZ_-hd3GTQpmvUEJUUIFsCvVuS7lUPjJRu-tGgH3Mzl5X3xZ_slsU-O3z_nfo36QK8GYLpOx26r_w1W8Z-qAQ</recordid><startdate>20240912</startdate><enddate>20240912</enddate><creator>Dai, Xiaofeng</creator><creator>Dai, Yilin</creator><creator>Zheng, Yan</creator><creator>Lv, Yi</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3636-6664</orcidid><orcidid>https://orcid.org/0000-0001-5323-7886</orcidid></search><sort><creationdate>20240912</creationdate><title>Magnetic nanoparticles and possible synergies with cold atmospheric plasma for cancer treatment</title><author>Dai, Xiaofeng ; Dai, Yilin ; Zheng, Yan ; Lv, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-108c0f56acd0d56f468aafd390aa04621bd6c31d6072f7d9e6e2b47de7e7dd783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biocompatibility</topic><topic>Biological properties</topic><topic>Biomedical materials</topic><topic>Chemistry</topic><topic>Cold treatment</topic><topic>Free radicals</topic><topic>Hyperthermia</topic><topic>Light sources</topic><topic>Low temperature resistance</topic><topic>Magnetic permeability</topic><topic>Magnetic properties</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Xiaofeng</creatorcontrib><creatorcontrib>Dai, Yilin</creatorcontrib><creatorcontrib>Zheng, Yan</creatorcontrib><creatorcontrib>Lv, Yi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Xiaofeng</au><au>Dai, Yilin</au><au>Zheng, Yan</au><au>Lv, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic nanoparticles and possible synergies with cold atmospheric plasma for cancer treatment</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2024-09-12</date><risdate>2024</risdate><volume>14</volume><issue>4</issue><spage>2939</spage><epage>2951</epage><pages>2939-2951</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>The biomedical applications of magnetic nanoparticles (MNPs) have gained increasing attention due to their unique biological, chemical, and magnetic properties such as biocompatibility, chemical stability, and high magnetic susceptibility. However, several critical issues still remain that have significantly halted the clinical translation of these nanomaterials such as the relatively low therapeutic efficacy, hyperthermia resistance, and biosafety concerns. To identify innovative approaches possibly creating synergies with MNPs to resolve or mitigate these problems, we delineated the anti-cancer properties of MNPs and their existing onco-therapeutic portfolios, based on which we proposed cold atmospheric plasma (CAP) to be a possible synergizer of MNPs by enhancing free radical generation, reducing hyperthermia resistance, preventing MNP aggregation, and functioning as an innovative magnetic and light source for magnetothermal- and photo-therapies. Our insights on the possible facilitating role of CAP in translating MNPs for biomedical use may inspire fresh research directions that, once actualized, gain mutual benefits from both. The biomedical applications of magnetic nanoparticles (MNPs) have gained increasing attention due to their unique biological, chemical, and magnetic properties such as biocompatibility, chemical stability, and high magnetic susceptibility.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39282063</pmid><doi>10.1039/d4ra03837a</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3636-6664</orcidid><orcidid>https://orcid.org/0000-0001-5323-7886</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2024-09, Vol.14 (4), p.2939-2951
issn 2046-2069
2046-2069
language eng
recordid cdi_proquest_miscellaneous_3106037872
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central
subjects Biocompatibility
Biological properties
Biomedical materials
Chemistry
Cold treatment
Free radicals
Hyperthermia
Light sources
Low temperature resistance
Magnetic permeability
Magnetic properties
Nanomaterials
Nanoparticles
title Magnetic nanoparticles and possible synergies with cold atmospheric plasma for cancer treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A20%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20nanoparticles%20and%20possible%20synergies%20with%20cold%20atmospheric%20plasma%20for%20cancer%20treatment&rft.jtitle=RSC%20advances&rft.au=Dai,%20Xiaofeng&rft.date=2024-09-12&rft.volume=14&rft.issue=4&rft.spage=2939&rft.epage=2951&rft.pages=2939-2951&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d4ra03837a&rft_dat=%3Cproquest_pubme%3E3111404029%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111404029&rft_id=info:pmid/39282063&rfr_iscdi=true