Implementation of a dynamic model updating pipeline provides a systematic process for maintaining performance of prediction models
We describe the steps for implementing a dynamic updating pipeline for clinical prediction models and illustrate the proposed methods in an application of 5-year survival prediction in cystic fibrosis. Dynamic model updating refers to the process of repeated updating of a clinical prediction model w...
Gespeichert in:
Veröffentlicht in: | Journal of clinical epidemiology 2024-11, Vol.175, p.111531, Article 111531 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 111531 |
container_title | Journal of clinical epidemiology |
container_volume | 175 |
creator | Tanner, Kamaryn T. Diaz-Ordaz, Karla Keogh, Ruth H. |
description | We describe the steps for implementing a dynamic updating pipeline for clinical prediction models and illustrate the proposed methods in an application of 5-year survival prediction in cystic fibrosis.
Dynamic model updating refers to the process of repeated updating of a clinical prediction model with new information to counter performance degradation. We describe 2 types of updating pipeline: “proactive updating” where candidate model updates are tested any time new data are available, and “reactive updating” where updates are only made when performance of the current model declines or the model structure changes. Methods for selecting the best candidate updating model are based on measures of predictive performance under the 2 pipelines. The methods are illustrated in our motivating example of a 5-year survival prediction model in cystic fibrosis. Over a dynamic updating period of 10 years, we report the updating decisions made and the performance of the prediction models selected under each pipeline.
Both the proactive and reactive updating pipelines produced survival prediction models that overall had better performance in terms of calibration and discrimination than a model that was not updated. Further, use of the dynamic updating pipelines ensured that the prediction model’s performance was consistently and frequently reviewed in new data.
Implementing a dynamic updating pipeline will help guard against model performance degradation while ensuring that the updating process is principled and data-driven. |
doi_str_mv | 10.1016/j.jclinepi.2024.111531 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3105490550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895435624002877</els_id><sourcerecordid>3105490550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-6de59c421bd158bdff85c44d591bff56df0c409d8c4048b79acc9bcc443c9f9e3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhL1SRuHDJYid2Et9AFR-VKnGBs-WMx8hRbAc7qbRXfjnObsuBCwePpZln3hnNS8gNo0dGWfd-Ok4wu4CLOza04UfGmGjZM3JgQz_UQjbsOTnQQYqat6K7Iq9ynihlPe3FS3LVyqbvqZAH8vvOLzN6DKteXQxVtJWuzClo76Dy0eBcbYsptfCzWtyC-8xqSfHBGcwFzae8oi912LOAOVc2psprVxRdOLdhKimvA-AuvyQ0Ds7Dzvr5NXlh9ZzxzeN_TX58_vT99mt9_-3L3e3H-xqavl3rzqCQwBs2GiaG0Vg7CODcCMlGa0VnLAVOpRlK5MPYSw0gRyhIC9JKbK_Ju4tuWfTXhnlV3mXAedYB45ZVy6jgkgpBC_r2H3SKWwplu0K1nDasvEJ1FwpSzDmhVUtyXqeTYlTtLqlJPbmkdpfUxaXSePMov40ezd-2J1sK8OEClPPgg8OkMjgsBzQuIazKRPe_GX8A8Rup6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3134021402</pqid></control><display><type>article</type><title>Implementation of a dynamic model updating pipeline provides a systematic process for maintaining performance of prediction models</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Tanner, Kamaryn T. ; Diaz-Ordaz, Karla ; Keogh, Ruth H.</creator><creatorcontrib>Tanner, Kamaryn T. ; Diaz-Ordaz, Karla ; Keogh, Ruth H.</creatorcontrib><description>We describe the steps for implementing a dynamic updating pipeline for clinical prediction models and illustrate the proposed methods in an application of 5-year survival prediction in cystic fibrosis.
Dynamic model updating refers to the process of repeated updating of a clinical prediction model with new information to counter performance degradation. We describe 2 types of updating pipeline: “proactive updating” where candidate model updates are tested any time new data are available, and “reactive updating” where updates are only made when performance of the current model declines or the model structure changes. Methods for selecting the best candidate updating model are based on measures of predictive performance under the 2 pipelines. The methods are illustrated in our motivating example of a 5-year survival prediction model in cystic fibrosis. Over a dynamic updating period of 10 years, we report the updating decisions made and the performance of the prediction models selected under each pipeline.
Both the proactive and reactive updating pipelines produced survival prediction models that overall had better performance in terms of calibration and discrimination than a model that was not updated. Further, use of the dynamic updating pipelines ensured that the prediction model’s performance was consistently and frequently reviewed in new data.
Implementing a dynamic updating pipeline will help guard against model performance degradation while ensuring that the updating process is principled and data-driven.</description><identifier>ISSN: 0895-4356</identifier><identifier>ISSN: 1878-5921</identifier><identifier>EISSN: 1878-5921</identifier><identifier>DOI: 10.1016/j.jclinepi.2024.111531</identifier><identifier>PMID: 39277059</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Business metrics ; Calibration ; Clinical medicine ; Clinical prediction models ; Cystic fibrosis ; Cystic Fibrosis - mortality ; Cystic Fibrosis - therapy ; Datasets ; Dynamic models ; Dynamic updating ; Humans ; Information processing ; Machine learning ; Model updating ; Models, Statistical ; Performance degradation ; Pipelines ; Prediction models ; Predictions ; Statistical prediction ; Survival ; Survival Analysis</subject><ispartof>Journal of clinical epidemiology, 2024-11, Vol.175, p.111531, Article 111531</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2024. The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-6de59c421bd158bdff85c44d591bff56df0c409d8c4048b79acc9bcc443c9f9e3</cites><orcidid>0000-0001-6504-3253 ; 0000-0001-6613-7833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jclinepi.2024.111531$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39277059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tanner, Kamaryn T.</creatorcontrib><creatorcontrib>Diaz-Ordaz, Karla</creatorcontrib><creatorcontrib>Keogh, Ruth H.</creatorcontrib><title>Implementation of a dynamic model updating pipeline provides a systematic process for maintaining performance of prediction models</title><title>Journal of clinical epidemiology</title><addtitle>J Clin Epidemiol</addtitle><description>We describe the steps for implementing a dynamic updating pipeline for clinical prediction models and illustrate the proposed methods in an application of 5-year survival prediction in cystic fibrosis.
Dynamic model updating refers to the process of repeated updating of a clinical prediction model with new information to counter performance degradation. We describe 2 types of updating pipeline: “proactive updating” where candidate model updates are tested any time new data are available, and “reactive updating” where updates are only made when performance of the current model declines or the model structure changes. Methods for selecting the best candidate updating model are based on measures of predictive performance under the 2 pipelines. The methods are illustrated in our motivating example of a 5-year survival prediction model in cystic fibrosis. Over a dynamic updating period of 10 years, we report the updating decisions made and the performance of the prediction models selected under each pipeline.
Both the proactive and reactive updating pipelines produced survival prediction models that overall had better performance in terms of calibration and discrimination than a model that was not updated. Further, use of the dynamic updating pipelines ensured that the prediction model’s performance was consistently and frequently reviewed in new data.
Implementing a dynamic updating pipeline will help guard against model performance degradation while ensuring that the updating process is principled and data-driven.</description><subject>Business metrics</subject><subject>Calibration</subject><subject>Clinical medicine</subject><subject>Clinical prediction models</subject><subject>Cystic fibrosis</subject><subject>Cystic Fibrosis - mortality</subject><subject>Cystic Fibrosis - therapy</subject><subject>Datasets</subject><subject>Dynamic models</subject><subject>Dynamic updating</subject><subject>Humans</subject><subject>Information processing</subject><subject>Machine learning</subject><subject>Model updating</subject><subject>Models, Statistical</subject><subject>Performance degradation</subject><subject>Pipelines</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Statistical prediction</subject><subject>Survival</subject><subject>Survival Analysis</subject><issn>0895-4356</issn><issn>1878-5921</issn><issn>1878-5921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EokvhL1SRuHDJYid2Et9AFR-VKnGBs-WMx8hRbAc7qbRXfjnObsuBCwePpZln3hnNS8gNo0dGWfd-Ok4wu4CLOza04UfGmGjZM3JgQz_UQjbsOTnQQYqat6K7Iq9ynihlPe3FS3LVyqbvqZAH8vvOLzN6DKteXQxVtJWuzClo76Dy0eBcbYsptfCzWtyC-8xqSfHBGcwFzae8oi912LOAOVc2psprVxRdOLdhKimvA-AuvyQ0Ds7Dzvr5NXlh9ZzxzeN_TX58_vT99mt9_-3L3e3H-xqavl3rzqCQwBs2GiaG0Vg7CODcCMlGa0VnLAVOpRlK5MPYSw0gRyhIC9JKbK_Ju4tuWfTXhnlV3mXAedYB45ZVy6jgkgpBC_r2H3SKWwplu0K1nDasvEJ1FwpSzDmhVUtyXqeTYlTtLqlJPbmkdpfUxaXSePMov40ezd-2J1sK8OEClPPgg8OkMjgsBzQuIazKRPe_GX8A8Rup6Q</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Tanner, Kamaryn T.</creator><creator>Diaz-Ordaz, Karla</creator><creator>Keogh, Ruth H.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7T2</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6504-3253</orcidid><orcidid>https://orcid.org/0000-0001-6613-7833</orcidid></search><sort><creationdate>202411</creationdate><title>Implementation of a dynamic model updating pipeline provides a systematic process for maintaining performance of prediction models</title><author>Tanner, Kamaryn T. ; Diaz-Ordaz, Karla ; Keogh, Ruth H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-6de59c421bd158bdff85c44d591bff56df0c409d8c4048b79acc9bcc443c9f9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Business metrics</topic><topic>Calibration</topic><topic>Clinical medicine</topic><topic>Clinical prediction models</topic><topic>Cystic fibrosis</topic><topic>Cystic Fibrosis - mortality</topic><topic>Cystic Fibrosis - therapy</topic><topic>Datasets</topic><topic>Dynamic models</topic><topic>Dynamic updating</topic><topic>Humans</topic><topic>Information processing</topic><topic>Machine learning</topic><topic>Model updating</topic><topic>Models, Statistical</topic><topic>Performance degradation</topic><topic>Pipelines</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Statistical prediction</topic><topic>Survival</topic><topic>Survival Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanner, Kamaryn T.</creatorcontrib><creatorcontrib>Diaz-Ordaz, Karla</creatorcontrib><creatorcontrib>Keogh, Ruth H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanner, Kamaryn T.</au><au>Diaz-Ordaz, Karla</au><au>Keogh, Ruth H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of a dynamic model updating pipeline provides a systematic process for maintaining performance of prediction models</atitle><jtitle>Journal of clinical epidemiology</jtitle><addtitle>J Clin Epidemiol</addtitle><date>2024-11</date><risdate>2024</risdate><volume>175</volume><spage>111531</spage><pages>111531-</pages><artnum>111531</artnum><issn>0895-4356</issn><issn>1878-5921</issn><eissn>1878-5921</eissn><abstract>We describe the steps for implementing a dynamic updating pipeline for clinical prediction models and illustrate the proposed methods in an application of 5-year survival prediction in cystic fibrosis.
Dynamic model updating refers to the process of repeated updating of a clinical prediction model with new information to counter performance degradation. We describe 2 types of updating pipeline: “proactive updating” where candidate model updates are tested any time new data are available, and “reactive updating” where updates are only made when performance of the current model declines or the model structure changes. Methods for selecting the best candidate updating model are based on measures of predictive performance under the 2 pipelines. The methods are illustrated in our motivating example of a 5-year survival prediction model in cystic fibrosis. Over a dynamic updating period of 10 years, we report the updating decisions made and the performance of the prediction models selected under each pipeline.
Both the proactive and reactive updating pipelines produced survival prediction models that overall had better performance in terms of calibration and discrimination than a model that was not updated. Further, use of the dynamic updating pipelines ensured that the prediction model’s performance was consistently and frequently reviewed in new data.
Implementing a dynamic updating pipeline will help guard against model performance degradation while ensuring that the updating process is principled and data-driven.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39277059</pmid><doi>10.1016/j.jclinepi.2024.111531</doi><orcidid>https://orcid.org/0000-0001-6504-3253</orcidid><orcidid>https://orcid.org/0000-0001-6613-7833</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4356 |
ispartof | Journal of clinical epidemiology, 2024-11, Vol.175, p.111531, Article 111531 |
issn | 0895-4356 1878-5921 1878-5921 |
language | eng |
recordid | cdi_proquest_miscellaneous_3105490550 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Business metrics Calibration Clinical medicine Clinical prediction models Cystic fibrosis Cystic Fibrosis - mortality Cystic Fibrosis - therapy Datasets Dynamic models Dynamic updating Humans Information processing Machine learning Model updating Models, Statistical Performance degradation Pipelines Prediction models Predictions Statistical prediction Survival Survival Analysis |
title | Implementation of a dynamic model updating pipeline provides a systematic process for maintaining performance of prediction models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A30%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20a%20dynamic%20model%20updating%20pipeline%20provides%20a%20systematic%20process%20for%20maintaining%20performance%20of%20prediction%20models&rft.jtitle=Journal%20of%20clinical%20epidemiology&rft.au=Tanner,%20Kamaryn%20T.&rft.date=2024-11&rft.volume=175&rft.spage=111531&rft.pages=111531-&rft.artnum=111531&rft.issn=0895-4356&rft.eissn=1878-5921&rft_id=info:doi/10.1016/j.jclinepi.2024.111531&rft_dat=%3Cproquest_cross%3E3105490550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3134021402&rft_id=info:pmid/39277059&rft_els_id=S0895435624002877&rfr_iscdi=true |