Volume fraction detection in multiphase systems using neutron activation analysis and artificial neural network

This study presents an application of an Artificial Neural Network (ANN) to detect fluids in an annular flow regime using Prompt-Gamma Neutron Activation Analysis (PGNAA). The ANN was trained using gamma-ray spectra resulting from neutron interactions with chemical elements found in fluids typical o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied radiation and isotopes 2024-12, Vol.214, p.111504, Article 111504
Hauptverfasser: Dam, R.S.F., Salgado, W.L., Conti, C.C., Schirru, R., Salgado, C.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111504
container_title Applied radiation and isotopes
container_volume 214
creator Dam, R.S.F.
Salgado, W.L.
Conti, C.C.
Schirru, R.
Salgado, C.M.
description This study presents an application of an Artificial Neural Network (ANN) to detect fluids in an annular flow regime using Prompt-Gamma Neutron Activation Analysis (PGNAA). The ANN was trained using gamma-ray spectra resulting from neutron interactions with chemical elements found in fluids typical of multiphase flow in oil exploration. These spectra were generated through mathematical simulation using the MCNP6 Monte Carlo computer code to model nuclear particle transport. A241Am-Be polyenergetic neutron source was simulated for these calculations. Several combinations of fluid fractions were developed to create a dataset used for both training and evaluation of the ANN. The ANN demonstrated robust generalization capabilities by accurately predicting the volume fraction of the three investigated fluids (saltwater, oil, and gas), even for cases not included in the training phase. The combination of ANN and PGNAA proved effective for analyzing multiphase systems, with over 92% of all showing errors of less than 5%. •ANN applied to determine the presence of fluids in annular flow regime using Prompt-Gamma Neutron Activation Analysis.•ANN on gamma spectra from neutron nuclear reactions with fluids elements found in multiphase flow in oil exploration.•Spectra obtained via MCNP6 simulations of the transport of a241Am-Be polyenergetic neutron source.
doi_str_mv 10.1016/j.apradiso.2024.111504
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3105489938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0969804324003324</els_id><sourcerecordid>3105489938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1608-aa27765442377b0a046f7c4b522ae360675ba8a415a9a7283be280031f79c7453</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi0EotvCX6hy5JLFX7GdG6jiS6rEBbhaE2cCXpJ48SSt9t_jbVqunOY9PO-M5mHsWvC94MK8PezhmKGPlPaSS70XQjRcP2M74aysW8f5c7bjrWlrx7W6YJdEB865dq18yS5UK60xyu1Y-pHGdcJqyBCWmOaqxwW3FOdqWsclHn8BYUUnWnCiaqU4_6xmXJdcmHPpDh5wmGE8UaQS-gryEocYIoxnND-M5T7l36_YiwFGwteP84p9__jh283n-vbrpy8372_rIAx3NYC01jRaS2Vtx4FrM9igu0ZKQGW4sU0HDrRooAUrnepQlp-VGGwbrG7UFXuz7T3m9GdFWvwUKeA4woxpJa8Eb4qMVrmCmg0NORFlHPwxxwnyyQvuz7L9wT_J9mfZfpNditePN9Zuwv5f7cluAd5tAJZP7yJmTyHiHLCPuUj2fYr_u_EXDCSVNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3105489938</pqid></control><display><type>article</type><title>Volume fraction detection in multiphase systems using neutron activation analysis and artificial neural network</title><source>Elsevier ScienceDirect Journals</source><creator>Dam, R.S.F. ; Salgado, W.L. ; Conti, C.C. ; Schirru, R. ; Salgado, C.M.</creator><creatorcontrib>Dam, R.S.F. ; Salgado, W.L. ; Conti, C.C. ; Schirru, R. ; Salgado, C.M.</creatorcontrib><description>This study presents an application of an Artificial Neural Network (ANN) to detect fluids in an annular flow regime using Prompt-Gamma Neutron Activation Analysis (PGNAA). The ANN was trained using gamma-ray spectra resulting from neutron interactions with chemical elements found in fluids typical of multiphase flow in oil exploration. These spectra were generated through mathematical simulation using the MCNP6 Monte Carlo computer code to model nuclear particle transport. A241Am-Be polyenergetic neutron source was simulated for these calculations. Several combinations of fluid fractions were developed to create a dataset used for both training and evaluation of the ANN. The ANN demonstrated robust generalization capabilities by accurately predicting the volume fraction of the three investigated fluids (saltwater, oil, and gas), even for cases not included in the training phase. The combination of ANN and PGNAA proved effective for analyzing multiphase systems, with over 92% of all showing errors of less than 5%. •ANN applied to determine the presence of fluids in annular flow regime using Prompt-Gamma Neutron Activation Analysis.•ANN on gamma spectra from neutron nuclear reactions with fluids elements found in multiphase flow in oil exploration.•Spectra obtained via MCNP6 simulations of the transport of a241Am-Be polyenergetic neutron source.</description><identifier>ISSN: 0969-8043</identifier><identifier>ISSN: 1872-9800</identifier><identifier>EISSN: 1872-9800</identifier><identifier>DOI: 10.1016/j.apradiso.2024.111504</identifier><identifier>PMID: 39276638</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Artificial neural network ; MCNP6 code ; Prompt-gamma neutron activation ; Volume fraction</subject><ispartof>Applied radiation and isotopes, 2024-12, Vol.214, p.111504, Article 111504</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1608-aa27765442377b0a046f7c4b522ae360675ba8a415a9a7283be280031f79c7453</cites><orcidid>0000-0001-5747-2314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0969804324003324$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27902,27903,65308</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39276638$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dam, R.S.F.</creatorcontrib><creatorcontrib>Salgado, W.L.</creatorcontrib><creatorcontrib>Conti, C.C.</creatorcontrib><creatorcontrib>Schirru, R.</creatorcontrib><creatorcontrib>Salgado, C.M.</creatorcontrib><title>Volume fraction detection in multiphase systems using neutron activation analysis and artificial neural network</title><title>Applied radiation and isotopes</title><addtitle>Appl Radiat Isot</addtitle><description>This study presents an application of an Artificial Neural Network (ANN) to detect fluids in an annular flow regime using Prompt-Gamma Neutron Activation Analysis (PGNAA). The ANN was trained using gamma-ray spectra resulting from neutron interactions with chemical elements found in fluids typical of multiphase flow in oil exploration. These spectra were generated through mathematical simulation using the MCNP6 Monte Carlo computer code to model nuclear particle transport. A241Am-Be polyenergetic neutron source was simulated for these calculations. Several combinations of fluid fractions were developed to create a dataset used for both training and evaluation of the ANN. The ANN demonstrated robust generalization capabilities by accurately predicting the volume fraction of the three investigated fluids (saltwater, oil, and gas), even for cases not included in the training phase. The combination of ANN and PGNAA proved effective for analyzing multiphase systems, with over 92% of all showing errors of less than 5%. •ANN applied to determine the presence of fluids in annular flow regime using Prompt-Gamma Neutron Activation Analysis.•ANN on gamma spectra from neutron nuclear reactions with fluids elements found in multiphase flow in oil exploration.•Spectra obtained via MCNP6 simulations of the transport of a241Am-Be polyenergetic neutron source.</description><subject>Artificial neural network</subject><subject>MCNP6 code</subject><subject>Prompt-gamma neutron activation</subject><subject>Volume fraction</subject><issn>0969-8043</issn><issn>1872-9800</issn><issn>1872-9800</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v1DAQhi0EotvCX6hy5JLFX7GdG6jiS6rEBbhaE2cCXpJ48SSt9t_jbVqunOY9PO-M5mHsWvC94MK8PezhmKGPlPaSS70XQjRcP2M74aysW8f5c7bjrWlrx7W6YJdEB865dq18yS5UK60xyu1Y-pHGdcJqyBCWmOaqxwW3FOdqWsclHn8BYUUnWnCiaqU4_6xmXJdcmHPpDh5wmGE8UaQS-gryEocYIoxnND-M5T7l36_YiwFGwteP84p9__jh283n-vbrpy8372_rIAx3NYC01jRaS2Vtx4FrM9igu0ZKQGW4sU0HDrRooAUrnepQlp-VGGwbrG7UFXuz7T3m9GdFWvwUKeA4woxpJa8Eb4qMVrmCmg0NORFlHPwxxwnyyQvuz7L9wT_J9mfZfpNditePN9Zuwv5f7cluAd5tAJZP7yJmTyHiHLCPuUj2fYr_u_EXDCSVNw</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Dam, R.S.F.</creator><creator>Salgado, W.L.</creator><creator>Conti, C.C.</creator><creator>Schirru, R.</creator><creator>Salgado, C.M.</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5747-2314</orcidid></search><sort><creationdate>202412</creationdate><title>Volume fraction detection in multiphase systems using neutron activation analysis and artificial neural network</title><author>Dam, R.S.F. ; Salgado, W.L. ; Conti, C.C. ; Schirru, R. ; Salgado, C.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1608-aa27765442377b0a046f7c4b522ae360675ba8a415a9a7283be280031f79c7453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural network</topic><topic>MCNP6 code</topic><topic>Prompt-gamma neutron activation</topic><topic>Volume fraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dam, R.S.F.</creatorcontrib><creatorcontrib>Salgado, W.L.</creatorcontrib><creatorcontrib>Conti, C.C.</creatorcontrib><creatorcontrib>Schirru, R.</creatorcontrib><creatorcontrib>Salgado, C.M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Applied radiation and isotopes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dam, R.S.F.</au><au>Salgado, W.L.</au><au>Conti, C.C.</au><au>Schirru, R.</au><au>Salgado, C.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volume fraction detection in multiphase systems using neutron activation analysis and artificial neural network</atitle><jtitle>Applied radiation and isotopes</jtitle><addtitle>Appl Radiat Isot</addtitle><date>2024-12</date><risdate>2024</risdate><volume>214</volume><spage>111504</spage><pages>111504-</pages><artnum>111504</artnum><issn>0969-8043</issn><issn>1872-9800</issn><eissn>1872-9800</eissn><abstract>This study presents an application of an Artificial Neural Network (ANN) to detect fluids in an annular flow regime using Prompt-Gamma Neutron Activation Analysis (PGNAA). The ANN was trained using gamma-ray spectra resulting from neutron interactions with chemical elements found in fluids typical of multiphase flow in oil exploration. These spectra were generated through mathematical simulation using the MCNP6 Monte Carlo computer code to model nuclear particle transport. A241Am-Be polyenergetic neutron source was simulated for these calculations. Several combinations of fluid fractions were developed to create a dataset used for both training and evaluation of the ANN. The ANN demonstrated robust generalization capabilities by accurately predicting the volume fraction of the three investigated fluids (saltwater, oil, and gas), even for cases not included in the training phase. The combination of ANN and PGNAA proved effective for analyzing multiphase systems, with over 92% of all showing errors of less than 5%. •ANN applied to determine the presence of fluids in annular flow regime using Prompt-Gamma Neutron Activation Analysis.•ANN on gamma spectra from neutron nuclear reactions with fluids elements found in multiphase flow in oil exploration.•Spectra obtained via MCNP6 simulations of the transport of a241Am-Be polyenergetic neutron source.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39276638</pmid><doi>10.1016/j.apradiso.2024.111504</doi><orcidid>https://orcid.org/0000-0001-5747-2314</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0969-8043
ispartof Applied radiation and isotopes, 2024-12, Vol.214, p.111504, Article 111504
issn 0969-8043
1872-9800
1872-9800
language eng
recordid cdi_proquest_miscellaneous_3105489938
source Elsevier ScienceDirect Journals
subjects Artificial neural network
MCNP6 code
Prompt-gamma neutron activation
Volume fraction
title Volume fraction detection in multiphase systems using neutron activation analysis and artificial neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volume%20fraction%20detection%20in%20multiphase%20systems%20using%20neutron%20activation%20analysis%20and%20artificial%20neural%20network&rft.jtitle=Applied%20radiation%20and%20isotopes&rft.au=Dam,%20R.S.F.&rft.date=2024-12&rft.volume=214&rft.spage=111504&rft.pages=111504-&rft.artnum=111504&rft.issn=0969-8043&rft.eissn=1872-9800&rft_id=info:doi/10.1016/j.apradiso.2024.111504&rft_dat=%3Cproquest_cross%3E3105489938%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3105489938&rft_id=info:pmid/39276638&rft_els_id=S0969804324003324&rfr_iscdi=true