Prediction model for major bleeding in anticoagulated patients with cancer-associated venous thromboembolism using machine learning and natural language processing
We developed a predictive model to assess the risk of major bleeding (MB) within 6 months of primary venous thromboembolism (VTE) in cancer patients receiving anticoagulant treatment. We also sought to describe the prevalence and incidence of VTE in cancer patients, and to describe clinical characte...
Gespeichert in:
Veröffentlicht in: | Clinical & translational oncology 2024-09 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Clinical & translational oncology |
container_volume | |
creator | Muñoz Martín, Andrés J Lecumberri, Ramón Souto, Juan Carlos Obispo, Berta Sanchez, Antonio Aparicio, Jorge Aguayo, Cristina Gutierrez, David García Palomo, Andrés Benavent, Diego Taberna, Miren Viñuela-Benéitez, María Carmen Arumi, Daniel Hernández-Presa, Miguel Ángel |
description | We developed a predictive model to assess the risk of major bleeding (MB) within 6 months of primary venous thromboembolism (VTE) in cancer patients receiving anticoagulant treatment. We also sought to describe the prevalence and incidence of VTE in cancer patients, and to describe clinical characteristics at baseline and bleeding events during follow-up in patients receiving anticoagulants.
This observational, retrospective, and multicenter study used natural language processing and machine learning (ML), to analyze unstructured clinical data from electronic health records from nine Spanish hospitals between 2014 and 2018. All adult cancer patients with VTE receiving anticoagulants were included. Both clinically- and ML-driven feature selection was performed to identify MB predictors. Logistic regression (LR), decision tree (DT), and random forest (RF) algorithms were used to train predictive models, which were validated in a hold-out dataset and compared to the previously developed CAT-BLEED score.
Of the 2,893,108 cancer patients screened, in-hospital VTE prevalence was 5.8% and the annual incidence ranged from 2.7 to 3.9%. We identified 21,227 patients with active cancer and VTE receiving anticoagulants (53.9% men, median age of 70 years). MB events after VTE diagnosis occurred in 10.9% of patients within the first six months. MB predictors included: hemoglobin, metastasis, age, platelets, leukocytes, and serum creatinine. The LR, DT, and RF models had AUC-ROC (95% confidence interval) values of 0.60 (0.55, 0.65), 0.60 (0.55, 0.65), and 0.61 (0.56, 0.66), respectively. These models outperformed the CAT-BLEED score with values of 0.53 (0.48, 0.59).
Our study shows encouraging results in identifying anticoagulated patients with cancer-associated VTE who are at high risk of MB. |
doi_str_mv | 10.1007/s12094-024-03586-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3104819294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104819294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-dc3af890d8c7145e51f04c91bb63fc9599e9131e5118493ca4ad18b3433f26783</originalsourceid><addsrcrecordid>eNpNkctuHCEQRVFkK37lB7KIWGbTDo_uHlhaVvyQLMULe42q6eoZLBomQDvK9_hHzXicyIuCUlXdW6BDyFfOzjljqx-ZC6bbhokaslN9Iz6RY95r3UjWdQcf8iNykvMTq1nP-WdyJLVY9ULpY_Jyn3B0trgY6BxH9HSKic7wVM_BY-2FNXWBQijORlgvHgqOdAvFYSiZ_nFlQy0Ei6mBnKN1b_1nDHHJtGxSnIeINbzLM13yzm4Gu3EBqUdIYVeAMNIAZUngqYewXmCNdJuixbwTnJHDCXzGL-_3KXm8-vlwedPc_bq-vby4a6wQqjSjlTApzUZlV7ztsOMTa63mw9DLyepOa9Rc8lrnqtXSQgsjV4NspZxEv1LylHzf-9bVvxfMxcwuW_T1SVh_YyRnreJa6LaOiv2oTTHnhJPZJjdD-ms4Mzs4Zg_HVDjmDY4RVfTt3X8ZZhz_S_7RkK9y7o7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104819294</pqid></control><display><type>article</type><title>Prediction model for major bleeding in anticoagulated patients with cancer-associated venous thromboembolism using machine learning and natural language processing</title><source>SpringerLink Journals - AutoHoldings</source><creator>Muñoz Martín, Andrés J ; Lecumberri, Ramón ; Souto, Juan Carlos ; Obispo, Berta ; Sanchez, Antonio ; Aparicio, Jorge ; Aguayo, Cristina ; Gutierrez, David ; García Palomo, Andrés ; Benavent, Diego ; Taberna, Miren ; Viñuela-Benéitez, María Carmen ; Arumi, Daniel ; Hernández-Presa, Miguel Ángel</creator><creatorcontrib>Muñoz Martín, Andrés J ; Lecumberri, Ramón ; Souto, Juan Carlos ; Obispo, Berta ; Sanchez, Antonio ; Aparicio, Jorge ; Aguayo, Cristina ; Gutierrez, David ; García Palomo, Andrés ; Benavent, Diego ; Taberna, Miren ; Viñuela-Benéitez, María Carmen ; Arumi, Daniel ; Hernández-Presa, Miguel Ángel</creatorcontrib><description>We developed a predictive model to assess the risk of major bleeding (MB) within 6 months of primary venous thromboembolism (VTE) in cancer patients receiving anticoagulant treatment. We also sought to describe the prevalence and incidence of VTE in cancer patients, and to describe clinical characteristics at baseline and bleeding events during follow-up in patients receiving anticoagulants.
This observational, retrospective, and multicenter study used natural language processing and machine learning (ML), to analyze unstructured clinical data from electronic health records from nine Spanish hospitals between 2014 and 2018. All adult cancer patients with VTE receiving anticoagulants were included. Both clinically- and ML-driven feature selection was performed to identify MB predictors. Logistic regression (LR), decision tree (DT), and random forest (RF) algorithms were used to train predictive models, which were validated in a hold-out dataset and compared to the previously developed CAT-BLEED score.
Of the 2,893,108 cancer patients screened, in-hospital VTE prevalence was 5.8% and the annual incidence ranged from 2.7 to 3.9%. We identified 21,227 patients with active cancer and VTE receiving anticoagulants (53.9% men, median age of 70 years). MB events after VTE diagnosis occurred in 10.9% of patients within the first six months. MB predictors included: hemoglobin, metastasis, age, platelets, leukocytes, and serum creatinine. The LR, DT, and RF models had AUC-ROC (95% confidence interval) values of 0.60 (0.55, 0.65), 0.60 (0.55, 0.65), and 0.61 (0.56, 0.66), respectively. These models outperformed the CAT-BLEED score with values of 0.53 (0.48, 0.59).
Our study shows encouraging results in identifying anticoagulated patients with cancer-associated VTE who are at high risk of MB.</description><identifier>ISSN: 1699-3055</identifier><identifier>EISSN: 1699-3055</identifier><identifier>DOI: 10.1007/s12094-024-03586-2</identifier><identifier>PMID: 39276289</identifier><language>eng</language><publisher>Italy</publisher><ispartof>Clinical & translational oncology, 2024-09</ispartof><rights>2024. The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-dc3af890d8c7145e51f04c91bb63fc9599e9131e5118493ca4ad18b3433f26783</cites><orcidid>0000-0001-6984-0727 ; 0000-0002-6638-7485 ; 0000-0003-1214-6595 ; 0000-0002-8850-8866 ; 0000-0001-9119-5330 ; 0000-0001-5527-0786 ; 0000-0003-2092-5142 ; 0000-0002-9159-9025 ; 0000-0001-6977-8249 ; 0000-0002-4335-0313 ; 0000-0001-6273-5078 ; 0000-0002-2446-186X ; 0000-0001-9593-4559 ; 0009-0002-1657-1118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39276289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muñoz Martín, Andrés J</creatorcontrib><creatorcontrib>Lecumberri, Ramón</creatorcontrib><creatorcontrib>Souto, Juan Carlos</creatorcontrib><creatorcontrib>Obispo, Berta</creatorcontrib><creatorcontrib>Sanchez, Antonio</creatorcontrib><creatorcontrib>Aparicio, Jorge</creatorcontrib><creatorcontrib>Aguayo, Cristina</creatorcontrib><creatorcontrib>Gutierrez, David</creatorcontrib><creatorcontrib>García Palomo, Andrés</creatorcontrib><creatorcontrib>Benavent, Diego</creatorcontrib><creatorcontrib>Taberna, Miren</creatorcontrib><creatorcontrib>Viñuela-Benéitez, María Carmen</creatorcontrib><creatorcontrib>Arumi, Daniel</creatorcontrib><creatorcontrib>Hernández-Presa, Miguel Ángel</creatorcontrib><title>Prediction model for major bleeding in anticoagulated patients with cancer-associated venous thromboembolism using machine learning and natural language processing</title><title>Clinical & translational oncology</title><addtitle>Clin Transl Oncol</addtitle><description>We developed a predictive model to assess the risk of major bleeding (MB) within 6 months of primary venous thromboembolism (VTE) in cancer patients receiving anticoagulant treatment. We also sought to describe the prevalence and incidence of VTE in cancer patients, and to describe clinical characteristics at baseline and bleeding events during follow-up in patients receiving anticoagulants.
This observational, retrospective, and multicenter study used natural language processing and machine learning (ML), to analyze unstructured clinical data from electronic health records from nine Spanish hospitals between 2014 and 2018. All adult cancer patients with VTE receiving anticoagulants were included. Both clinically- and ML-driven feature selection was performed to identify MB predictors. Logistic regression (LR), decision tree (DT), and random forest (RF) algorithms were used to train predictive models, which were validated in a hold-out dataset and compared to the previously developed CAT-BLEED score.
Of the 2,893,108 cancer patients screened, in-hospital VTE prevalence was 5.8% and the annual incidence ranged from 2.7 to 3.9%. We identified 21,227 patients with active cancer and VTE receiving anticoagulants (53.9% men, median age of 70 years). MB events after VTE diagnosis occurred in 10.9% of patients within the first six months. MB predictors included: hemoglobin, metastasis, age, platelets, leukocytes, and serum creatinine. The LR, DT, and RF models had AUC-ROC (95% confidence interval) values of 0.60 (0.55, 0.65), 0.60 (0.55, 0.65), and 0.61 (0.56, 0.66), respectively. These models outperformed the CAT-BLEED score with values of 0.53 (0.48, 0.59).
Our study shows encouraging results in identifying anticoagulated patients with cancer-associated VTE who are at high risk of MB.</description><issn>1699-3055</issn><issn>1699-3055</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkctuHCEQRVFkK37lB7KIWGbTDo_uHlhaVvyQLMULe42q6eoZLBomQDvK9_hHzXicyIuCUlXdW6BDyFfOzjljqx-ZC6bbhokaslN9Iz6RY95r3UjWdQcf8iNykvMTq1nP-WdyJLVY9ULpY_Jyn3B0trgY6BxH9HSKic7wVM_BY-2FNXWBQijORlgvHgqOdAvFYSiZ_nFlQy0Ei6mBnKN1b_1nDHHJtGxSnIeINbzLM13yzm4Gu3EBqUdIYVeAMNIAZUngqYewXmCNdJuixbwTnJHDCXzGL-_3KXm8-vlwedPc_bq-vby4a6wQqjSjlTApzUZlV7ztsOMTa63mw9DLyepOa9Rc8lrnqtXSQgsjV4NspZxEv1LylHzf-9bVvxfMxcwuW_T1SVh_YyRnreJa6LaOiv2oTTHnhJPZJjdD-ms4Mzs4Zg_HVDjmDY4RVfTt3X8ZZhz_S_7RkK9y7o7w</recordid><startdate>20240914</startdate><enddate>20240914</enddate><creator>Muñoz Martín, Andrés J</creator><creator>Lecumberri, Ramón</creator><creator>Souto, Juan Carlos</creator><creator>Obispo, Berta</creator><creator>Sanchez, Antonio</creator><creator>Aparicio, Jorge</creator><creator>Aguayo, Cristina</creator><creator>Gutierrez, David</creator><creator>García Palomo, Andrés</creator><creator>Benavent, Diego</creator><creator>Taberna, Miren</creator><creator>Viñuela-Benéitez, María Carmen</creator><creator>Arumi, Daniel</creator><creator>Hernández-Presa, Miguel Ángel</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6984-0727</orcidid><orcidid>https://orcid.org/0000-0002-6638-7485</orcidid><orcidid>https://orcid.org/0000-0003-1214-6595</orcidid><orcidid>https://orcid.org/0000-0002-8850-8866</orcidid><orcidid>https://orcid.org/0000-0001-9119-5330</orcidid><orcidid>https://orcid.org/0000-0001-5527-0786</orcidid><orcidid>https://orcid.org/0000-0003-2092-5142</orcidid><orcidid>https://orcid.org/0000-0002-9159-9025</orcidid><orcidid>https://orcid.org/0000-0001-6977-8249</orcidid><orcidid>https://orcid.org/0000-0002-4335-0313</orcidid><orcidid>https://orcid.org/0000-0001-6273-5078</orcidid><orcidid>https://orcid.org/0000-0002-2446-186X</orcidid><orcidid>https://orcid.org/0000-0001-9593-4559</orcidid><orcidid>https://orcid.org/0009-0002-1657-1118</orcidid></search><sort><creationdate>20240914</creationdate><title>Prediction model for major bleeding in anticoagulated patients with cancer-associated venous thromboembolism using machine learning and natural language processing</title><author>Muñoz Martín, Andrés J ; Lecumberri, Ramón ; Souto, Juan Carlos ; Obispo, Berta ; Sanchez, Antonio ; Aparicio, Jorge ; Aguayo, Cristina ; Gutierrez, David ; García Palomo, Andrés ; Benavent, Diego ; Taberna, Miren ; Viñuela-Benéitez, María Carmen ; Arumi, Daniel ; Hernández-Presa, Miguel Ángel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-dc3af890d8c7145e51f04c91bb63fc9599e9131e5118493ca4ad18b3433f26783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muñoz Martín, Andrés J</creatorcontrib><creatorcontrib>Lecumberri, Ramón</creatorcontrib><creatorcontrib>Souto, Juan Carlos</creatorcontrib><creatorcontrib>Obispo, Berta</creatorcontrib><creatorcontrib>Sanchez, Antonio</creatorcontrib><creatorcontrib>Aparicio, Jorge</creatorcontrib><creatorcontrib>Aguayo, Cristina</creatorcontrib><creatorcontrib>Gutierrez, David</creatorcontrib><creatorcontrib>García Palomo, Andrés</creatorcontrib><creatorcontrib>Benavent, Diego</creatorcontrib><creatorcontrib>Taberna, Miren</creatorcontrib><creatorcontrib>Viñuela-Benéitez, María Carmen</creatorcontrib><creatorcontrib>Arumi, Daniel</creatorcontrib><creatorcontrib>Hernández-Presa, Miguel Ángel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical & translational oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muñoz Martín, Andrés J</au><au>Lecumberri, Ramón</au><au>Souto, Juan Carlos</au><au>Obispo, Berta</au><au>Sanchez, Antonio</au><au>Aparicio, Jorge</au><au>Aguayo, Cristina</au><au>Gutierrez, David</au><au>García Palomo, Andrés</au><au>Benavent, Diego</au><au>Taberna, Miren</au><au>Viñuela-Benéitez, María Carmen</au><au>Arumi, Daniel</au><au>Hernández-Presa, Miguel Ángel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction model for major bleeding in anticoagulated patients with cancer-associated venous thromboembolism using machine learning and natural language processing</atitle><jtitle>Clinical & translational oncology</jtitle><addtitle>Clin Transl Oncol</addtitle><date>2024-09-14</date><risdate>2024</risdate><issn>1699-3055</issn><eissn>1699-3055</eissn><abstract>We developed a predictive model to assess the risk of major bleeding (MB) within 6 months of primary venous thromboembolism (VTE) in cancer patients receiving anticoagulant treatment. We also sought to describe the prevalence and incidence of VTE in cancer patients, and to describe clinical characteristics at baseline and bleeding events during follow-up in patients receiving anticoagulants.
This observational, retrospective, and multicenter study used natural language processing and machine learning (ML), to analyze unstructured clinical data from electronic health records from nine Spanish hospitals between 2014 and 2018. All adult cancer patients with VTE receiving anticoagulants were included. Both clinically- and ML-driven feature selection was performed to identify MB predictors. Logistic regression (LR), decision tree (DT), and random forest (RF) algorithms were used to train predictive models, which were validated in a hold-out dataset and compared to the previously developed CAT-BLEED score.
Of the 2,893,108 cancer patients screened, in-hospital VTE prevalence was 5.8% and the annual incidence ranged from 2.7 to 3.9%. We identified 21,227 patients with active cancer and VTE receiving anticoagulants (53.9% men, median age of 70 years). MB events after VTE diagnosis occurred in 10.9% of patients within the first six months. MB predictors included: hemoglobin, metastasis, age, platelets, leukocytes, and serum creatinine. The LR, DT, and RF models had AUC-ROC (95% confidence interval) values of 0.60 (0.55, 0.65), 0.60 (0.55, 0.65), and 0.61 (0.56, 0.66), respectively. These models outperformed the CAT-BLEED score with values of 0.53 (0.48, 0.59).
Our study shows encouraging results in identifying anticoagulated patients with cancer-associated VTE who are at high risk of MB.</abstract><cop>Italy</cop><pmid>39276289</pmid><doi>10.1007/s12094-024-03586-2</doi><orcidid>https://orcid.org/0000-0001-6984-0727</orcidid><orcidid>https://orcid.org/0000-0002-6638-7485</orcidid><orcidid>https://orcid.org/0000-0003-1214-6595</orcidid><orcidid>https://orcid.org/0000-0002-8850-8866</orcidid><orcidid>https://orcid.org/0000-0001-9119-5330</orcidid><orcidid>https://orcid.org/0000-0001-5527-0786</orcidid><orcidid>https://orcid.org/0000-0003-2092-5142</orcidid><orcidid>https://orcid.org/0000-0002-9159-9025</orcidid><orcidid>https://orcid.org/0000-0001-6977-8249</orcidid><orcidid>https://orcid.org/0000-0002-4335-0313</orcidid><orcidid>https://orcid.org/0000-0001-6273-5078</orcidid><orcidid>https://orcid.org/0000-0002-2446-186X</orcidid><orcidid>https://orcid.org/0000-0001-9593-4559</orcidid><orcidid>https://orcid.org/0009-0002-1657-1118</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1699-3055 |
ispartof | Clinical & translational oncology, 2024-09 |
issn | 1699-3055 1699-3055 |
language | eng |
recordid | cdi_proquest_miscellaneous_3104819294 |
source | SpringerLink Journals - AutoHoldings |
title | Prediction model for major bleeding in anticoagulated patients with cancer-associated venous thromboembolism using machine learning and natural language processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20model%20for%20major%20bleeding%20in%20anticoagulated%20patients%20with%20cancer-associated%20venous%20thromboembolism%20using%20machine%20learning%20and%20natural%20language%20processing&rft.jtitle=Clinical%20&%20translational%20oncology&rft.au=Mu%C3%B1oz%20Mart%C3%ADn,%20Andr%C3%A9s%20J&rft.date=2024-09-14&rft.issn=1699-3055&rft.eissn=1699-3055&rft_id=info:doi/10.1007/s12094-024-03586-2&rft_dat=%3Cproquest_cross%3E3104819294%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104819294&rft_id=info:pmid/39276289&rfr_iscdi=true |