Effect of Citric Acid Hard Anodizing on the Mechanical Properties and Corrosion Resistance of Different Aluminum Alloys
Hard anodizing is used to improve the anodic films' mechanical qualities and aluminum alloys' corrosion resistance. Applications for anodic oxide coatings on aluminum alloys include the space environment. In this work, the aluminum alloys 2024-T3 (Al-Cu), 6061-T6 (Al-Mg-Si), and 7075-T6 (A...
Gespeichert in:
Veröffentlicht in: | Materials 2024-08, Vol.17 (17), p.4285 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 17 |
container_start_page | 4285 |
container_title | Materials |
container_volume | 17 |
creator | Cabral-Miramontes, José Almeraya-Calderón, Facundo Méndez-Ramírez, Ce Tochtli Flores-De Los Rios, Juan Pablo Maldonado-Bandala, Erick Baltazar-Zamora, Miguel Ángel Nieves-Mendoza, Demetrio Lara-Banda, María Pedraza-Basulto, Gabriela Gaona-Tiburcio, Citlalli |
description | Hard anodizing is used to improve the anodic films' mechanical qualities and aluminum alloys' corrosion resistance. Applications for anodic oxide coatings on aluminum alloys include the space environment. In this work, the aluminum alloys 2024-T3 (Al-Cu), 6061-T6 (Al-Mg-Si), and 7075-T6 (Al-Zn) were prepared by hard anodizing electrochemical treatment using citric and sulfur acid baths at different concentrations. The aim of the work is to observe the effect of citric acid on the microstructure of the substrate, the mechanical properties, the corrosion resistance, and the morphology of the hard anodic layers. Hard anodizing was performed on three different aluminum alloys using three citric-sulfuric acid mixtures for 60 min and using current densities of 3.0 and 4.5 A/dm
. Vickers microhardness (HV) measurements and scanning electron microscopy (SEM) were utilized to determine the mechanical characteristics and microstructure of the hard anodizing material, and electrochemical techniques to understand the corrosion kinetics. The result indicates that the aluminum alloy 6061-T6 (Al-Mg-Si) has the maximum hard-coat thickness and hardness. The oxidation of Zn and Mg during the anodizing process found in the 7075-T6 (Al-Zn) alloy promotes oxide formation. Because of the high copper concentration, the oxide layer that forms on the 2024-T6 (Al-Cu) Al alloy has the lowest thickness, hardness, and corrosion resistance. Citric and sulfuric acid solutions can be used to provide hard anodizing in a variety of aluminum alloys that have corrosion resistance and mechanical qualities on par with or better than traditional sulfuric acid anodizing. |
doi_str_mv | 10.3390/ma17174285 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3104542153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104542153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-9ff24bad7188dd98c340cb1e9902efe84b267ef9e67bcdca04973a49aef31a213</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhoMoWtSLP0ACXkSo5mu7m2Opn1BRRM9LNpnYyG5Sk11Ef70p1g-cy8zh4WFmXoQOKDnlXJKzTtGSloJVxQYaUSknYyqF2Pwz76D9lF5ILs5pxeQ22uGSlWJSFiP0dmEt6B4Hi2euj07jqXYGX6to8NQH4z6cf8bB434B-Bb0QnmnVYvvY1hC7B0krLzBsxBjSC5zD5Bc6pXXsHKeu6yP4Hs8bYfO-aHLQxve0x7asqpNsL_uu-jp8uJxdj2e313dzKbzsWaC9GNpLRONMiWtKmNkpbkguqEgJWFgoRINm5RgJUzKRhutiJAlV0IqsJwqRvkuOv7yLmN4HSD1deeShrZVHsKQak6JKASjBc_o0T_0JQzR5-1WFJeyEJxk6uSL0vngFMHWy-g6Fd9rSupVIvVvIhk-XCuHpgPzg37_n38Cf4iGFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103995430</pqid></control><display><type>article</type><title>Effect of Citric Acid Hard Anodizing on the Mechanical Properties and Corrosion Resistance of Different Aluminum Alloys</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Cabral-Miramontes, José ; Almeraya-Calderón, Facundo ; Méndez-Ramírez, Ce Tochtli ; Flores-De Los Rios, Juan Pablo ; Maldonado-Bandala, Erick ; Baltazar-Zamora, Miguel Ángel ; Nieves-Mendoza, Demetrio ; Lara-Banda, María ; Pedraza-Basulto, Gabriela ; Gaona-Tiburcio, Citlalli</creator><creatorcontrib>Cabral-Miramontes, José ; Almeraya-Calderón, Facundo ; Méndez-Ramírez, Ce Tochtli ; Flores-De Los Rios, Juan Pablo ; Maldonado-Bandala, Erick ; Baltazar-Zamora, Miguel Ángel ; Nieves-Mendoza, Demetrio ; Lara-Banda, María ; Pedraza-Basulto, Gabriela ; Gaona-Tiburcio, Citlalli</creatorcontrib><description>Hard anodizing is used to improve the anodic films' mechanical qualities and aluminum alloys' corrosion resistance. Applications for anodic oxide coatings on aluminum alloys include the space environment. In this work, the aluminum alloys 2024-T3 (Al-Cu), 6061-T6 (Al-Mg-Si), and 7075-T6 (Al-Zn) were prepared by hard anodizing electrochemical treatment using citric and sulfur acid baths at different concentrations. The aim of the work is to observe the effect of citric acid on the microstructure of the substrate, the mechanical properties, the corrosion resistance, and the morphology of the hard anodic layers. Hard anodizing was performed on three different aluminum alloys using three citric-sulfuric acid mixtures for 60 min and using current densities of 3.0 and 4.5 A/dm
. Vickers microhardness (HV) measurements and scanning electron microscopy (SEM) were utilized to determine the mechanical characteristics and microstructure of the hard anodizing material, and electrochemical techniques to understand the corrosion kinetics. The result indicates that the aluminum alloy 6061-T6 (Al-Mg-Si) has the maximum hard-coat thickness and hardness. The oxidation of Zn and Mg during the anodizing process found in the 7075-T6 (Al-Zn) alloy promotes oxide formation. Because of the high copper concentration, the oxide layer that forms on the 2024-T6 (Al-Cu) Al alloy has the lowest thickness, hardness, and corrosion resistance. Citric and sulfuric acid solutions can be used to provide hard anodizing in a variety of aluminum alloys that have corrosion resistance and mechanical qualities on par with or better than traditional sulfuric acid anodizing.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17174285</identifier><identifier>PMID: 39274675</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acid resistance ; Adsorption ; Aerospace environments ; Aircraft ; Alloys ; Aluminum alloys ; Aluminum base alloys ; Anodizing baths ; Citric acid ; Copper ; Corrosion effects ; Corrosion resistance ; Corrosion resistant alloys ; Diamond pyramid hardness ; Electrolytes ; Hard anodizing ; Ligands ; Magnesium ; Mechanical properties ; Metals ; Microstructure ; Morphology ; Oxidation ; Oxide coatings ; Pore size ; Protective coatings ; Reaction kinetics ; Silicon ; Substrates ; Sulfuric acid ; Sulfuric acid anodizing ; Thickness ; Zinc</subject><ispartof>Materials, 2024-08, Vol.17 (17), p.4285</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c240t-9ff24bad7188dd98c340cb1e9902efe84b267ef9e67bcdca04973a49aef31a213</cites><orcidid>0000-0003-1483-3081 ; 0000-0001-9072-3090 ; 0000-0001-5526-989X ; 0000-0002-3014-2814 ; 0000-0001-7685-0712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39274675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cabral-Miramontes, José</creatorcontrib><creatorcontrib>Almeraya-Calderón, Facundo</creatorcontrib><creatorcontrib>Méndez-Ramírez, Ce Tochtli</creatorcontrib><creatorcontrib>Flores-De Los Rios, Juan Pablo</creatorcontrib><creatorcontrib>Maldonado-Bandala, Erick</creatorcontrib><creatorcontrib>Baltazar-Zamora, Miguel Ángel</creatorcontrib><creatorcontrib>Nieves-Mendoza, Demetrio</creatorcontrib><creatorcontrib>Lara-Banda, María</creatorcontrib><creatorcontrib>Pedraza-Basulto, Gabriela</creatorcontrib><creatorcontrib>Gaona-Tiburcio, Citlalli</creatorcontrib><title>Effect of Citric Acid Hard Anodizing on the Mechanical Properties and Corrosion Resistance of Different Aluminum Alloys</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Hard anodizing is used to improve the anodic films' mechanical qualities and aluminum alloys' corrosion resistance. Applications for anodic oxide coatings on aluminum alloys include the space environment. In this work, the aluminum alloys 2024-T3 (Al-Cu), 6061-T6 (Al-Mg-Si), and 7075-T6 (Al-Zn) were prepared by hard anodizing electrochemical treatment using citric and sulfur acid baths at different concentrations. The aim of the work is to observe the effect of citric acid on the microstructure of the substrate, the mechanical properties, the corrosion resistance, and the morphology of the hard anodic layers. Hard anodizing was performed on three different aluminum alloys using three citric-sulfuric acid mixtures for 60 min and using current densities of 3.0 and 4.5 A/dm
. Vickers microhardness (HV) measurements and scanning electron microscopy (SEM) were utilized to determine the mechanical characteristics and microstructure of the hard anodizing material, and electrochemical techniques to understand the corrosion kinetics. The result indicates that the aluminum alloy 6061-T6 (Al-Mg-Si) has the maximum hard-coat thickness and hardness. The oxidation of Zn and Mg during the anodizing process found in the 7075-T6 (Al-Zn) alloy promotes oxide formation. Because of the high copper concentration, the oxide layer that forms on the 2024-T6 (Al-Cu) Al alloy has the lowest thickness, hardness, and corrosion resistance. Citric and sulfuric acid solutions can be used to provide hard anodizing in a variety of aluminum alloys that have corrosion resistance and mechanical qualities on par with or better than traditional sulfuric acid anodizing.</description><subject>Acid resistance</subject><subject>Adsorption</subject><subject>Aerospace environments</subject><subject>Aircraft</subject><subject>Alloys</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Anodizing baths</subject><subject>Citric acid</subject><subject>Copper</subject><subject>Corrosion effects</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant alloys</subject><subject>Diamond pyramid hardness</subject><subject>Electrolytes</subject><subject>Hard anodizing</subject><subject>Ligands</subject><subject>Magnesium</subject><subject>Mechanical properties</subject><subject>Metals</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Oxidation</subject><subject>Oxide coatings</subject><subject>Pore size</subject><subject>Protective coatings</subject><subject>Reaction kinetics</subject><subject>Silicon</subject><subject>Substrates</subject><subject>Sulfuric acid</subject><subject>Sulfuric acid anodizing</subject><subject>Thickness</subject><subject>Zinc</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU1LAzEQhoMoWtSLP0ACXkSo5mu7m2Opn1BRRM9LNpnYyG5Sk11Ef70p1g-cy8zh4WFmXoQOKDnlXJKzTtGSloJVxQYaUSknYyqF2Pwz76D9lF5ILs5pxeQ22uGSlWJSFiP0dmEt6B4Hi2euj07jqXYGX6to8NQH4z6cf8bB434B-Bb0QnmnVYvvY1hC7B0krLzBsxBjSC5zD5Bc6pXXsHKeu6yP4Hs8bYfO-aHLQxve0x7asqpNsL_uu-jp8uJxdj2e313dzKbzsWaC9GNpLRONMiWtKmNkpbkguqEgJWFgoRINm5RgJUzKRhutiJAlV0IqsJwqRvkuOv7yLmN4HSD1deeShrZVHsKQak6JKASjBc_o0T_0JQzR5-1WFJeyEJxk6uSL0vngFMHWy-g6Fd9rSupVIvVvIhk-XCuHpgPzg37_n38Cf4iGFw</recordid><startdate>20240829</startdate><enddate>20240829</enddate><creator>Cabral-Miramontes, José</creator><creator>Almeraya-Calderón, Facundo</creator><creator>Méndez-Ramírez, Ce Tochtli</creator><creator>Flores-De Los Rios, Juan Pablo</creator><creator>Maldonado-Bandala, Erick</creator><creator>Baltazar-Zamora, Miguel Ángel</creator><creator>Nieves-Mendoza, Demetrio</creator><creator>Lara-Banda, María</creator><creator>Pedraza-Basulto, Gabriela</creator><creator>Gaona-Tiburcio, Citlalli</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1483-3081</orcidid><orcidid>https://orcid.org/0000-0001-9072-3090</orcidid><orcidid>https://orcid.org/0000-0001-5526-989X</orcidid><orcidid>https://orcid.org/0000-0002-3014-2814</orcidid><orcidid>https://orcid.org/0000-0001-7685-0712</orcidid></search><sort><creationdate>20240829</creationdate><title>Effect of Citric Acid Hard Anodizing on the Mechanical Properties and Corrosion Resistance of Different Aluminum Alloys</title><author>Cabral-Miramontes, José ; Almeraya-Calderón, Facundo ; Méndez-Ramírez, Ce Tochtli ; Flores-De Los Rios, Juan Pablo ; Maldonado-Bandala, Erick ; Baltazar-Zamora, Miguel Ángel ; Nieves-Mendoza, Demetrio ; Lara-Banda, María ; Pedraza-Basulto, Gabriela ; Gaona-Tiburcio, Citlalli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-9ff24bad7188dd98c340cb1e9902efe84b267ef9e67bcdca04973a49aef31a213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acid resistance</topic><topic>Adsorption</topic><topic>Aerospace environments</topic><topic>Aircraft</topic><topic>Alloys</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Anodizing baths</topic><topic>Citric acid</topic><topic>Copper</topic><topic>Corrosion effects</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant alloys</topic><topic>Diamond pyramid hardness</topic><topic>Electrolytes</topic><topic>Hard anodizing</topic><topic>Ligands</topic><topic>Magnesium</topic><topic>Mechanical properties</topic><topic>Metals</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Oxidation</topic><topic>Oxide coatings</topic><topic>Pore size</topic><topic>Protective coatings</topic><topic>Reaction kinetics</topic><topic>Silicon</topic><topic>Substrates</topic><topic>Sulfuric acid</topic><topic>Sulfuric acid anodizing</topic><topic>Thickness</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabral-Miramontes, José</creatorcontrib><creatorcontrib>Almeraya-Calderón, Facundo</creatorcontrib><creatorcontrib>Méndez-Ramírez, Ce Tochtli</creatorcontrib><creatorcontrib>Flores-De Los Rios, Juan Pablo</creatorcontrib><creatorcontrib>Maldonado-Bandala, Erick</creatorcontrib><creatorcontrib>Baltazar-Zamora, Miguel Ángel</creatorcontrib><creatorcontrib>Nieves-Mendoza, Demetrio</creatorcontrib><creatorcontrib>Lara-Banda, María</creatorcontrib><creatorcontrib>Pedraza-Basulto, Gabriela</creatorcontrib><creatorcontrib>Gaona-Tiburcio, Citlalli</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cabral-Miramontes, José</au><au>Almeraya-Calderón, Facundo</au><au>Méndez-Ramírez, Ce Tochtli</au><au>Flores-De Los Rios, Juan Pablo</au><au>Maldonado-Bandala, Erick</au><au>Baltazar-Zamora, Miguel Ángel</au><au>Nieves-Mendoza, Demetrio</au><au>Lara-Banda, María</au><au>Pedraza-Basulto, Gabriela</au><au>Gaona-Tiburcio, Citlalli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Citric Acid Hard Anodizing on the Mechanical Properties and Corrosion Resistance of Different Aluminum Alloys</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-08-29</date><risdate>2024</risdate><volume>17</volume><issue>17</issue><spage>4285</spage><pages>4285-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Hard anodizing is used to improve the anodic films' mechanical qualities and aluminum alloys' corrosion resistance. Applications for anodic oxide coatings on aluminum alloys include the space environment. In this work, the aluminum alloys 2024-T3 (Al-Cu), 6061-T6 (Al-Mg-Si), and 7075-T6 (Al-Zn) were prepared by hard anodizing electrochemical treatment using citric and sulfur acid baths at different concentrations. The aim of the work is to observe the effect of citric acid on the microstructure of the substrate, the mechanical properties, the corrosion resistance, and the morphology of the hard anodic layers. Hard anodizing was performed on three different aluminum alloys using three citric-sulfuric acid mixtures for 60 min and using current densities of 3.0 and 4.5 A/dm
. Vickers microhardness (HV) measurements and scanning electron microscopy (SEM) were utilized to determine the mechanical characteristics and microstructure of the hard anodizing material, and electrochemical techniques to understand the corrosion kinetics. The result indicates that the aluminum alloy 6061-T6 (Al-Mg-Si) has the maximum hard-coat thickness and hardness. The oxidation of Zn and Mg during the anodizing process found in the 7075-T6 (Al-Zn) alloy promotes oxide formation. Because of the high copper concentration, the oxide layer that forms on the 2024-T6 (Al-Cu) Al alloy has the lowest thickness, hardness, and corrosion resistance. Citric and sulfuric acid solutions can be used to provide hard anodizing in a variety of aluminum alloys that have corrosion resistance and mechanical qualities on par with or better than traditional sulfuric acid anodizing.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39274675</pmid><doi>10.3390/ma17174285</doi><orcidid>https://orcid.org/0000-0003-1483-3081</orcidid><orcidid>https://orcid.org/0000-0001-9072-3090</orcidid><orcidid>https://orcid.org/0000-0001-5526-989X</orcidid><orcidid>https://orcid.org/0000-0002-3014-2814</orcidid><orcidid>https://orcid.org/0000-0001-7685-0712</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-08, Vol.17 (17), p.4285 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_proquest_miscellaneous_3104542153 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Acid resistance Adsorption Aerospace environments Aircraft Alloys Aluminum alloys Aluminum base alloys Anodizing baths Citric acid Copper Corrosion effects Corrosion resistance Corrosion resistant alloys Diamond pyramid hardness Electrolytes Hard anodizing Ligands Magnesium Mechanical properties Metals Microstructure Morphology Oxidation Oxide coatings Pore size Protective coatings Reaction kinetics Silicon Substrates Sulfuric acid Sulfuric acid anodizing Thickness Zinc |
title | Effect of Citric Acid Hard Anodizing on the Mechanical Properties and Corrosion Resistance of Different Aluminum Alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Citric%20Acid%20Hard%20Anodizing%20on%20the%20Mechanical%20Properties%20and%20Corrosion%20Resistance%20of%20Different%20Aluminum%20Alloys&rft.jtitle=Materials&rft.au=Cabral-Miramontes,%20Jos%C3%A9&rft.date=2024-08-29&rft.volume=17&rft.issue=17&rft.spage=4285&rft.pages=4285-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17174285&rft_dat=%3Cproquest_cross%3E3104542153%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103995430&rft_id=info:pmid/39274675&rfr_iscdi=true |