Improvement of Hydrogen-Resistant Gas Turbine Engine Blades: Single-Crystal Superalloy Manufacturing Technology
This paper presents the results of an analysis of resistance to hydrogen embrittlement and offers solutions and technologies for manufacturing castings of components for critical applications, such as blades for gas turbine engines (GTEs). The values of the technological parameters for directional c...
Gespeichert in:
Veröffentlicht in: | Materials 2024-08, Vol.17 (17), p.4265 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 17 |
container_start_page | 4265 |
container_title | Materials |
container_volume | 17 |
creator | Balitskii, Alexander I Kvasnytska, Yulia H Ivaskevych, Ljubomyr M Kvasnytska, Katrine H Balitskii, Olexiy A Miskiewicz, Radoslaw M Noha, Volodymyr O Parkhomchuk, Zhanna V Veis, Valentyn I Dowejko, Jakub Maciej |
description | This paper presents the results of an analysis of resistance to hydrogen embrittlement and offers solutions and technologies for manufacturing castings of components for critical applications, such as blades for gas turbine engines (GTEs). The values of the technological parameters for directional crystallization (DC) are determined, allowing the production of castings with a regular dendritic structure of the crystallization front in the range of 10 to 12 mm/min and a temperature gradient at the crystallization front in the range of 165-175 °C/cm. The technological process of making GTE blades has been improved by using a scheme for obtaining disposable models of complex profile castings with the use of 3D printing for the manufacture of ceramic molds. The ceramic mold is obtained through an environmentally friendly technology using water-based binders. Short-term tensile testing of the samples in gaseous hydrogen revealed high hydrogen resistance of the CM-88 alloy produced by directed crystallization technology: the relative elongation in hydrogen at a pressure of 30 MPa increased from 2% for the commercial alloy to 8% for the experimental single-crystal alloy. |
doi_str_mv | 10.3390/ma17174265 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3104541884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A809022705</galeid><sourcerecordid>A809022705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-cc1d37c7c301193852e4e7fb1d103b7f34848f1c83359ff3f0ee7d7408477d23</originalsourceid><addsrcrecordid>eNpdkU1rGzEQhkVJaYLrS39AWeglFDbR11pSb4lxnEBCoPF9kbWj7Qat5Eq7hf33kWOnLZk5zDA88zLDi9AXgi8YU_iy10QQwemi-oDOiFKLkijOT_7rT9E8pWecgzEiqfqETpmigi-q6gyFu34Xwx_owQ9FsMXt1MTQgi9_QurSoPN0rVOxGeO281CsfLsv1043kH4UT51vHZTLOGXUFU_jDqJ2LkzFg_aj1WYYY0aKDZhfPrjQTp_RR6tdgvmxztDmZrVZ3pb3j-u75dV9aahQQ2kMaZgwwjBMiGKyosBB2C1pCGZbYRmXXFpiJGOVspZZDCAawbHkQjSUzdD5QTY_93uENNR9lww4pz2EMdWMYF5xIiXP6Ld36HMYo8_HvVIY0wXfC14cqFY7qDtvwxC1ydlA35ngwXZ5fiWxwpQKXOWF74cFE0NKEWy9i12v41QTXO-dq_85l-GvxxvGbQ_NX_TNJ_YC2K6SmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104002642</pqid></control><display><type>article</type><title>Improvement of Hydrogen-Resistant Gas Turbine Engine Blades: Single-Crystal Superalloy Manufacturing Technology</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Balitskii, Alexander I ; Kvasnytska, Yulia H ; Ivaskevych, Ljubomyr M ; Kvasnytska, Katrine H ; Balitskii, Olexiy A ; Miskiewicz, Radoslaw M ; Noha, Volodymyr O ; Parkhomchuk, Zhanna V ; Veis, Valentyn I ; Dowejko, Jakub Maciej</creator><creatorcontrib>Balitskii, Alexander I ; Kvasnytska, Yulia H ; Ivaskevych, Ljubomyr M ; Kvasnytska, Katrine H ; Balitskii, Olexiy A ; Miskiewicz, Radoslaw M ; Noha, Volodymyr O ; Parkhomchuk, Zhanna V ; Veis, Valentyn I ; Dowejko, Jakub Maciej</creatorcontrib><description>This paper presents the results of an analysis of resistance to hydrogen embrittlement and offers solutions and technologies for manufacturing castings of components for critical applications, such as blades for gas turbine engines (GTEs). The values of the technological parameters for directional crystallization (DC) are determined, allowing the production of castings with a regular dendritic structure of the crystallization front in the range of 10 to 12 mm/min and a temperature gradient at the crystallization front in the range of 165-175 °C/cm. The technological process of making GTE blades has been improved by using a scheme for obtaining disposable models of complex profile castings with the use of 3D printing for the manufacture of ceramic molds. The ceramic mold is obtained through an environmentally friendly technology using water-based binders. Short-term tensile testing of the samples in gaseous hydrogen revealed high hydrogen resistance of the CM-88 alloy produced by directed crystallization technology: the relative elongation in hydrogen at a pressure of 30 MPa increased from 2% for the commercial alloy to 8% for the experimental single-crystal alloy.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17174265</identifier><identifier>PMID: 39274655</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3D printing ; Alcohol ; Alloys ; Blades ; Ceramic industry ; Ceramic mold castings ; Ceramic molds ; Cooling ; Corrosion resistance ; Crystallization ; Dendritic structure ; Gas turbine engines ; Gas-turbines ; Heat resistance ; Heat resisting alloys ; Hydrogen ; Hydrogen embrittlement ; Manufacturing ; Metals ; Plant layout ; Radiation ; Shells ; Single crystals ; Superalloys ; Technology application ; Technology assessment ; Temperature ; Tensile tests ; Three dimensional printing</subject><ispartof>Materials, 2024-08, Vol.17 (17), p.4265</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-cc1d37c7c301193852e4e7fb1d103b7f34848f1c83359ff3f0ee7d7408477d23</cites><orcidid>0000-0003-2370-4783 ; 0000-0002-7217-0020 ; 0000-0001-8712-9285 ; 0000-0002-3026-8951 ; 0000-0001-8889-2303 ; 0000-0001-8361-1146 ; 0000-0002-3841-5493 ; 0000-0001-9395-4871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39274655$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Balitskii, Alexander I</creatorcontrib><creatorcontrib>Kvasnytska, Yulia H</creatorcontrib><creatorcontrib>Ivaskevych, Ljubomyr M</creatorcontrib><creatorcontrib>Kvasnytska, Katrine H</creatorcontrib><creatorcontrib>Balitskii, Olexiy A</creatorcontrib><creatorcontrib>Miskiewicz, Radoslaw M</creatorcontrib><creatorcontrib>Noha, Volodymyr O</creatorcontrib><creatorcontrib>Parkhomchuk, Zhanna V</creatorcontrib><creatorcontrib>Veis, Valentyn I</creatorcontrib><creatorcontrib>Dowejko, Jakub Maciej</creatorcontrib><title>Improvement of Hydrogen-Resistant Gas Turbine Engine Blades: Single-Crystal Superalloy Manufacturing Technology</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>This paper presents the results of an analysis of resistance to hydrogen embrittlement and offers solutions and technologies for manufacturing castings of components for critical applications, such as blades for gas turbine engines (GTEs). The values of the technological parameters for directional crystallization (DC) are determined, allowing the production of castings with a regular dendritic structure of the crystallization front in the range of 10 to 12 mm/min and a temperature gradient at the crystallization front in the range of 165-175 °C/cm. The technological process of making GTE blades has been improved by using a scheme for obtaining disposable models of complex profile castings with the use of 3D printing for the manufacture of ceramic molds. The ceramic mold is obtained through an environmentally friendly technology using water-based binders. Short-term tensile testing of the samples in gaseous hydrogen revealed high hydrogen resistance of the CM-88 alloy produced by directed crystallization technology: the relative elongation in hydrogen at a pressure of 30 MPa increased from 2% for the commercial alloy to 8% for the experimental single-crystal alloy.</description><subject>3D printing</subject><subject>Alcohol</subject><subject>Alloys</subject><subject>Blades</subject><subject>Ceramic industry</subject><subject>Ceramic mold castings</subject><subject>Ceramic molds</subject><subject>Cooling</subject><subject>Corrosion resistance</subject><subject>Crystallization</subject><subject>Dendritic structure</subject><subject>Gas turbine engines</subject><subject>Gas-turbines</subject><subject>Heat resistance</subject><subject>Heat resisting alloys</subject><subject>Hydrogen</subject><subject>Hydrogen embrittlement</subject><subject>Manufacturing</subject><subject>Metals</subject><subject>Plant layout</subject><subject>Radiation</subject><subject>Shells</subject><subject>Single crystals</subject><subject>Superalloys</subject><subject>Technology application</subject><subject>Technology assessment</subject><subject>Temperature</subject><subject>Tensile tests</subject><subject>Three dimensional printing</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU1rGzEQhkVJaYLrS39AWeglFDbR11pSb4lxnEBCoPF9kbWj7Qat5Eq7hf33kWOnLZk5zDA88zLDi9AXgi8YU_iy10QQwemi-oDOiFKLkijOT_7rT9E8pWecgzEiqfqETpmigi-q6gyFu34Xwx_owQ9FsMXt1MTQgi9_QurSoPN0rVOxGeO281CsfLsv1043kH4UT51vHZTLOGXUFU_jDqJ2LkzFg_aj1WYYY0aKDZhfPrjQTp_RR6tdgvmxztDmZrVZ3pb3j-u75dV9aahQQ2kMaZgwwjBMiGKyosBB2C1pCGZbYRmXXFpiJGOVspZZDCAawbHkQjSUzdD5QTY_93uENNR9lww4pz2EMdWMYF5xIiXP6Ld36HMYo8_HvVIY0wXfC14cqFY7qDtvwxC1ydlA35ngwXZ5fiWxwpQKXOWF74cFE0NKEWy9i12v41QTXO-dq_85l-GvxxvGbQ_NX_TNJ_YC2K6SmA</recordid><startdate>20240828</startdate><enddate>20240828</enddate><creator>Balitskii, Alexander I</creator><creator>Kvasnytska, Yulia H</creator><creator>Ivaskevych, Ljubomyr M</creator><creator>Kvasnytska, Katrine H</creator><creator>Balitskii, Olexiy A</creator><creator>Miskiewicz, Radoslaw M</creator><creator>Noha, Volodymyr O</creator><creator>Parkhomchuk, Zhanna V</creator><creator>Veis, Valentyn I</creator><creator>Dowejko, Jakub Maciej</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2370-4783</orcidid><orcidid>https://orcid.org/0000-0002-7217-0020</orcidid><orcidid>https://orcid.org/0000-0001-8712-9285</orcidid><orcidid>https://orcid.org/0000-0002-3026-8951</orcidid><orcidid>https://orcid.org/0000-0001-8889-2303</orcidid><orcidid>https://orcid.org/0000-0001-8361-1146</orcidid><orcidid>https://orcid.org/0000-0002-3841-5493</orcidid><orcidid>https://orcid.org/0000-0001-9395-4871</orcidid></search><sort><creationdate>20240828</creationdate><title>Improvement of Hydrogen-Resistant Gas Turbine Engine Blades: Single-Crystal Superalloy Manufacturing Technology</title><author>Balitskii, Alexander I ; Kvasnytska, Yulia H ; Ivaskevych, Ljubomyr M ; Kvasnytska, Katrine H ; Balitskii, Olexiy A ; Miskiewicz, Radoslaw M ; Noha, Volodymyr O ; Parkhomchuk, Zhanna V ; Veis, Valentyn I ; Dowejko, Jakub Maciej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-cc1d37c7c301193852e4e7fb1d103b7f34848f1c83359ff3f0ee7d7408477d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D printing</topic><topic>Alcohol</topic><topic>Alloys</topic><topic>Blades</topic><topic>Ceramic industry</topic><topic>Ceramic mold castings</topic><topic>Ceramic molds</topic><topic>Cooling</topic><topic>Corrosion resistance</topic><topic>Crystallization</topic><topic>Dendritic structure</topic><topic>Gas turbine engines</topic><topic>Gas-turbines</topic><topic>Heat resistance</topic><topic>Heat resisting alloys</topic><topic>Hydrogen</topic><topic>Hydrogen embrittlement</topic><topic>Manufacturing</topic><topic>Metals</topic><topic>Plant layout</topic><topic>Radiation</topic><topic>Shells</topic><topic>Single crystals</topic><topic>Superalloys</topic><topic>Technology application</topic><topic>Technology assessment</topic><topic>Temperature</topic><topic>Tensile tests</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balitskii, Alexander I</creatorcontrib><creatorcontrib>Kvasnytska, Yulia H</creatorcontrib><creatorcontrib>Ivaskevych, Ljubomyr M</creatorcontrib><creatorcontrib>Kvasnytska, Katrine H</creatorcontrib><creatorcontrib>Balitskii, Olexiy A</creatorcontrib><creatorcontrib>Miskiewicz, Radoslaw M</creatorcontrib><creatorcontrib>Noha, Volodymyr O</creatorcontrib><creatorcontrib>Parkhomchuk, Zhanna V</creatorcontrib><creatorcontrib>Veis, Valentyn I</creatorcontrib><creatorcontrib>Dowejko, Jakub Maciej</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balitskii, Alexander I</au><au>Kvasnytska, Yulia H</au><au>Ivaskevych, Ljubomyr M</au><au>Kvasnytska, Katrine H</au><au>Balitskii, Olexiy A</au><au>Miskiewicz, Radoslaw M</au><au>Noha, Volodymyr O</au><au>Parkhomchuk, Zhanna V</au><au>Veis, Valentyn I</au><au>Dowejko, Jakub Maciej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of Hydrogen-Resistant Gas Turbine Engine Blades: Single-Crystal Superalloy Manufacturing Technology</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-08-28</date><risdate>2024</risdate><volume>17</volume><issue>17</issue><spage>4265</spage><pages>4265-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This paper presents the results of an analysis of resistance to hydrogen embrittlement and offers solutions and technologies for manufacturing castings of components for critical applications, such as blades for gas turbine engines (GTEs). The values of the technological parameters for directional crystallization (DC) are determined, allowing the production of castings with a regular dendritic structure of the crystallization front in the range of 10 to 12 mm/min and a temperature gradient at the crystallization front in the range of 165-175 °C/cm. The technological process of making GTE blades has been improved by using a scheme for obtaining disposable models of complex profile castings with the use of 3D printing for the manufacture of ceramic molds. The ceramic mold is obtained through an environmentally friendly technology using water-based binders. Short-term tensile testing of the samples in gaseous hydrogen revealed high hydrogen resistance of the CM-88 alloy produced by directed crystallization technology: the relative elongation in hydrogen at a pressure of 30 MPa increased from 2% for the commercial alloy to 8% for the experimental single-crystal alloy.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39274655</pmid><doi>10.3390/ma17174265</doi><orcidid>https://orcid.org/0000-0003-2370-4783</orcidid><orcidid>https://orcid.org/0000-0002-7217-0020</orcidid><orcidid>https://orcid.org/0000-0001-8712-9285</orcidid><orcidid>https://orcid.org/0000-0002-3026-8951</orcidid><orcidid>https://orcid.org/0000-0001-8889-2303</orcidid><orcidid>https://orcid.org/0000-0001-8361-1146</orcidid><orcidid>https://orcid.org/0000-0002-3841-5493</orcidid><orcidid>https://orcid.org/0000-0001-9395-4871</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-08, Vol.17 (17), p.4265 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_proquest_miscellaneous_3104541884 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 3D printing Alcohol Alloys Blades Ceramic industry Ceramic mold castings Ceramic molds Cooling Corrosion resistance Crystallization Dendritic structure Gas turbine engines Gas-turbines Heat resistance Heat resisting alloys Hydrogen Hydrogen embrittlement Manufacturing Metals Plant layout Radiation Shells Single crystals Superalloys Technology application Technology assessment Temperature Tensile tests Three dimensional printing |
title | Improvement of Hydrogen-Resistant Gas Turbine Engine Blades: Single-Crystal Superalloy Manufacturing Technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20Hydrogen-Resistant%20Gas%20Turbine%20Engine%20Blades:%20Single-Crystal%20Superalloy%20Manufacturing%20Technology&rft.jtitle=Materials&rft.au=Balitskii,%20Alexander%20I&rft.date=2024-08-28&rft.volume=17&rft.issue=17&rft.spage=4265&rft.pages=4265-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17174265&rft_dat=%3Cgale_proqu%3EA809022705%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104002642&rft_id=info:pmid/39274655&rft_galeid=A809022705&rfr_iscdi=true |