In Situ Investigation of Tensile Response for Inconel 718 Micro-Architected Materials Fabricated by Selective Laser Melting

Topology optimization enables the design of advanced architected materials with tailored mechanical properties and optimal material distribution. This method can result in the production of parts with uniform mechanical properties, reducing anisotropy effects and addressing a critical challenge in m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-09, Vol.17 (17), p.4433
Hauptverfasser: Kyriakidis, Ioannis Filippos, Kladovasilakis, Nikolaos, Pechlivani, Eleftheria Maria, Korlos, Apostolos, David, Constantine, Tsongas, Konstantinos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page 4433
container_title Materials
container_volume 17
creator Kyriakidis, Ioannis Filippos
Kladovasilakis, Nikolaos
Pechlivani, Eleftheria Maria
Korlos, Apostolos
David, Constantine
Tsongas, Konstantinos
description Topology optimization enables the design of advanced architected materials with tailored mechanical properties and optimal material distribution. This method can result in the production of parts with uniform mechanical properties, reducing anisotropy effects and addressing a critical challenge in metal additive manufacturing (AM). The current study aims to examine the micro-tensile response of Inconel 718 architected materials utilizing the Selective Laser Melting Technique. In this context, three novel architected materials, i.e., Octet, Schwarz Diamond (SD), and hybrid Schwarz Diamond and Face Centered Cubic (FCC), were tested in three different relative densities. The specimens were then subjected to uniaxial quasi-static tensile tests to determine their key mechanical properties, including elastic modulus, yield strength, and ultimate tensile strength (UTS), as well as the scaling laws describing the tensile response of each architected material. In situ Scanning Electron Microscopy (SEM) has been performed to observe the structure and grain morphology of the 3D printed specimens along with the phase transitions (elastic, plastic), the crack propagation, and the overall failure mechanisms. The results highlight the effect of the lattice type and the relative density on the mechanical properties of architected materials. Topologically optimized structures presented a 70-80% reduction in overall strength, while the SD and SD&FCC structures presented higher stretching dominated behavior, which was also verified by the -value range (1-2) extracted from the identification of the scaling laws.
doi_str_mv 10.3390/ma17174433
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3104541489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104541489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-aac5c70c1bc237853815e83060a294a8aad1bf9ba6244d464036912f7bb084123</originalsourceid><addsrcrecordid>eNpd0V1LwzAUBuAgihPdjT9AAt6IUM1X2-RSxOlgQ9B5XdL0VDO6ZCbtQPzzZviJuUkID4dzzovQMSUXnCtyudK0pKUQnO-gA6pUkVElxO6f9wiNY1ySdDinkql9NOKKlUIydoDepw4_2n7AU7eB2Ntn3VvvsG_xAly0HeAHiGvvIuDWh6SMd9Dhkko8tyb47CqYF9uD6aHBc91DsLqLeKLrYI3eftZv-BG6BOwG8ExHCHgOXW_d8xHaaxOG8dd9iJ4mN4vru2x2fzu9vpplhgnSZ1qb3JTE0NowXsqcS5qD5KQgmimhpdYNrVtV64IJ0YhCEF4oytqyrokUlPFDdPZZdx3865CmrFY2Gug67cAPseKUiFxQIVWip__o0g_Bpe62iiupiJBJnX-qtIAYA7TVOtiVDm8VJdU2leo3lYRPvkoO9QqaH_qdAf8AnhGFyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103989048</pqid></control><display><type>article</type><title>In Situ Investigation of Tensile Response for Inconel 718 Micro-Architected Materials Fabricated by Selective Laser Melting</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Kyriakidis, Ioannis Filippos ; Kladovasilakis, Nikolaos ; Pechlivani, Eleftheria Maria ; Korlos, Apostolos ; David, Constantine ; Tsongas, Konstantinos</creator><creatorcontrib>Kyriakidis, Ioannis Filippos ; Kladovasilakis, Nikolaos ; Pechlivani, Eleftheria Maria ; Korlos, Apostolos ; David, Constantine ; Tsongas, Konstantinos</creatorcontrib><description>Topology optimization enables the design of advanced architected materials with tailored mechanical properties and optimal material distribution. This method can result in the production of parts with uniform mechanical properties, reducing anisotropy effects and addressing a critical challenge in metal additive manufacturing (AM). The current study aims to examine the micro-tensile response of Inconel 718 architected materials utilizing the Selective Laser Melting Technique. In this context, three novel architected materials, i.e., Octet, Schwarz Diamond (SD), and hybrid Schwarz Diamond and Face Centered Cubic (FCC), were tested in three different relative densities. The specimens were then subjected to uniaxial quasi-static tensile tests to determine their key mechanical properties, including elastic modulus, yield strength, and ultimate tensile strength (UTS), as well as the scaling laws describing the tensile response of each architected material. In situ Scanning Electron Microscopy (SEM) has been performed to observe the structure and grain morphology of the 3D printed specimens along with the phase transitions (elastic, plastic), the crack propagation, and the overall failure mechanisms. The results highlight the effect of the lattice type and the relative density on the mechanical properties of architected materials. Topologically optimized structures presented a 70-80% reduction in overall strength, while the SD and SD&amp;FCC structures presented higher stretching dominated behavior, which was also verified by the -value range (1-2) extracted from the identification of the scaling laws.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17174433</identifier><identifier>PMID: 39274822</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Additive manufacturing ; Anisotropy ; Customization ; Deformation ; Density ; Design ; Design optimization ; Elastic properties ; Face centered cubic lattice ; Failure mechanisms ; Fractures ; Laser beam melting ; Lasers ; Mathematical morphology ; Mechanical properties ; Microscopy ; Modulus of elasticity ; Morphology ; Nickel base alloys ; Optimization ; Particle size ; Phase transitions ; Plant layout ; Raw materials ; Scaling laws ; Software ; Specific gravity ; Strain hardening ; Superalloys ; Tensile tests ; Titanium alloys ; Topology optimization ; Ultimate tensile strength</subject><ispartof>Materials, 2024-09, Vol.17 (17), p.4433</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c240t-aac5c70c1bc237853815e83060a294a8aad1bf9ba6244d464036912f7bb084123</cites><orcidid>0000-0003-3573-5405 ; 0000-0002-6594-8770 ; 0000-0003-4515-0259 ; 0000-0001-7050-5432 ; 0000-0001-6385-2815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39274822$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kyriakidis, Ioannis Filippos</creatorcontrib><creatorcontrib>Kladovasilakis, Nikolaos</creatorcontrib><creatorcontrib>Pechlivani, Eleftheria Maria</creatorcontrib><creatorcontrib>Korlos, Apostolos</creatorcontrib><creatorcontrib>David, Constantine</creatorcontrib><creatorcontrib>Tsongas, Konstantinos</creatorcontrib><title>In Situ Investigation of Tensile Response for Inconel 718 Micro-Architected Materials Fabricated by Selective Laser Melting</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Topology optimization enables the design of advanced architected materials with tailored mechanical properties and optimal material distribution. This method can result in the production of parts with uniform mechanical properties, reducing anisotropy effects and addressing a critical challenge in metal additive manufacturing (AM). The current study aims to examine the micro-tensile response of Inconel 718 architected materials utilizing the Selective Laser Melting Technique. In this context, three novel architected materials, i.e., Octet, Schwarz Diamond (SD), and hybrid Schwarz Diamond and Face Centered Cubic (FCC), were tested in three different relative densities. The specimens were then subjected to uniaxial quasi-static tensile tests to determine their key mechanical properties, including elastic modulus, yield strength, and ultimate tensile strength (UTS), as well as the scaling laws describing the tensile response of each architected material. In situ Scanning Electron Microscopy (SEM) has been performed to observe the structure and grain morphology of the 3D printed specimens along with the phase transitions (elastic, plastic), the crack propagation, and the overall failure mechanisms. The results highlight the effect of the lattice type and the relative density on the mechanical properties of architected materials. Topologically optimized structures presented a 70-80% reduction in overall strength, while the SD and SD&amp;FCC structures presented higher stretching dominated behavior, which was also verified by the -value range (1-2) extracted from the identification of the scaling laws.</description><subject>Additive manufacturing</subject><subject>Anisotropy</subject><subject>Customization</subject><subject>Deformation</subject><subject>Density</subject><subject>Design</subject><subject>Design optimization</subject><subject>Elastic properties</subject><subject>Face centered cubic lattice</subject><subject>Failure mechanisms</subject><subject>Fractures</subject><subject>Laser beam melting</subject><subject>Lasers</subject><subject>Mathematical morphology</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Modulus of elasticity</subject><subject>Morphology</subject><subject>Nickel base alloys</subject><subject>Optimization</subject><subject>Particle size</subject><subject>Phase transitions</subject><subject>Plant layout</subject><subject>Raw materials</subject><subject>Scaling laws</subject><subject>Software</subject><subject>Specific gravity</subject><subject>Strain hardening</subject><subject>Superalloys</subject><subject>Tensile tests</subject><subject>Titanium alloys</subject><subject>Topology optimization</subject><subject>Ultimate tensile strength</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpd0V1LwzAUBuAgihPdjT9AAt6IUM1X2-RSxOlgQ9B5XdL0VDO6ZCbtQPzzZviJuUkID4dzzovQMSUXnCtyudK0pKUQnO-gA6pUkVElxO6f9wiNY1ySdDinkql9NOKKlUIydoDepw4_2n7AU7eB2Ntn3VvvsG_xAly0HeAHiGvvIuDWh6SMd9Dhkko8tyb47CqYF9uD6aHBc91DsLqLeKLrYI3eftZv-BG6BOwG8ExHCHgOXW_d8xHaaxOG8dd9iJ4mN4vru2x2fzu9vpplhgnSZ1qb3JTE0NowXsqcS5qD5KQgmimhpdYNrVtV64IJ0YhCEF4oytqyrokUlPFDdPZZdx3865CmrFY2Gug67cAPseKUiFxQIVWip__o0g_Bpe62iiupiJBJnX-qtIAYA7TVOtiVDm8VJdU2leo3lYRPvkoO9QqaH_qdAf8AnhGFyQ</recordid><startdate>20240909</startdate><enddate>20240909</enddate><creator>Kyriakidis, Ioannis Filippos</creator><creator>Kladovasilakis, Nikolaos</creator><creator>Pechlivani, Eleftheria Maria</creator><creator>Korlos, Apostolos</creator><creator>David, Constantine</creator><creator>Tsongas, Konstantinos</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3573-5405</orcidid><orcidid>https://orcid.org/0000-0002-6594-8770</orcidid><orcidid>https://orcid.org/0000-0003-4515-0259</orcidid><orcidid>https://orcid.org/0000-0001-7050-5432</orcidid><orcidid>https://orcid.org/0000-0001-6385-2815</orcidid></search><sort><creationdate>20240909</creationdate><title>In Situ Investigation of Tensile Response for Inconel 718 Micro-Architected Materials Fabricated by Selective Laser Melting</title><author>Kyriakidis, Ioannis Filippos ; Kladovasilakis, Nikolaos ; Pechlivani, Eleftheria Maria ; Korlos, Apostolos ; David, Constantine ; Tsongas, Konstantinos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-aac5c70c1bc237853815e83060a294a8aad1bf9ba6244d464036912f7bb084123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Additive manufacturing</topic><topic>Anisotropy</topic><topic>Customization</topic><topic>Deformation</topic><topic>Density</topic><topic>Design</topic><topic>Design optimization</topic><topic>Elastic properties</topic><topic>Face centered cubic lattice</topic><topic>Failure mechanisms</topic><topic>Fractures</topic><topic>Laser beam melting</topic><topic>Lasers</topic><topic>Mathematical morphology</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Modulus of elasticity</topic><topic>Morphology</topic><topic>Nickel base alloys</topic><topic>Optimization</topic><topic>Particle size</topic><topic>Phase transitions</topic><topic>Plant layout</topic><topic>Raw materials</topic><topic>Scaling laws</topic><topic>Software</topic><topic>Specific gravity</topic><topic>Strain hardening</topic><topic>Superalloys</topic><topic>Tensile tests</topic><topic>Titanium alloys</topic><topic>Topology optimization</topic><topic>Ultimate tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kyriakidis, Ioannis Filippos</creatorcontrib><creatorcontrib>Kladovasilakis, Nikolaos</creatorcontrib><creatorcontrib>Pechlivani, Eleftheria Maria</creatorcontrib><creatorcontrib>Korlos, Apostolos</creatorcontrib><creatorcontrib>David, Constantine</creatorcontrib><creatorcontrib>Tsongas, Konstantinos</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kyriakidis, Ioannis Filippos</au><au>Kladovasilakis, Nikolaos</au><au>Pechlivani, Eleftheria Maria</au><au>Korlos, Apostolos</au><au>David, Constantine</au><au>Tsongas, Konstantinos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Investigation of Tensile Response for Inconel 718 Micro-Architected Materials Fabricated by Selective Laser Melting</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-09-09</date><risdate>2024</risdate><volume>17</volume><issue>17</issue><spage>4433</spage><pages>4433-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Topology optimization enables the design of advanced architected materials with tailored mechanical properties and optimal material distribution. This method can result in the production of parts with uniform mechanical properties, reducing anisotropy effects and addressing a critical challenge in metal additive manufacturing (AM). The current study aims to examine the micro-tensile response of Inconel 718 architected materials utilizing the Selective Laser Melting Technique. In this context, three novel architected materials, i.e., Octet, Schwarz Diamond (SD), and hybrid Schwarz Diamond and Face Centered Cubic (FCC), were tested in three different relative densities. The specimens were then subjected to uniaxial quasi-static tensile tests to determine their key mechanical properties, including elastic modulus, yield strength, and ultimate tensile strength (UTS), as well as the scaling laws describing the tensile response of each architected material. In situ Scanning Electron Microscopy (SEM) has been performed to observe the structure and grain morphology of the 3D printed specimens along with the phase transitions (elastic, plastic), the crack propagation, and the overall failure mechanisms. The results highlight the effect of the lattice type and the relative density on the mechanical properties of architected materials. Topologically optimized structures presented a 70-80% reduction in overall strength, while the SD and SD&amp;FCC structures presented higher stretching dominated behavior, which was also verified by the -value range (1-2) extracted from the identification of the scaling laws.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39274822</pmid><doi>10.3390/ma17174433</doi><orcidid>https://orcid.org/0000-0003-3573-5405</orcidid><orcidid>https://orcid.org/0000-0002-6594-8770</orcidid><orcidid>https://orcid.org/0000-0003-4515-0259</orcidid><orcidid>https://orcid.org/0000-0001-7050-5432</orcidid><orcidid>https://orcid.org/0000-0001-6385-2815</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-09, Vol.17 (17), p.4433
issn 1996-1944
1996-1944
language eng
recordid cdi_proquest_miscellaneous_3104541489
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Additive manufacturing
Anisotropy
Customization
Deformation
Density
Design
Design optimization
Elastic properties
Face centered cubic lattice
Failure mechanisms
Fractures
Laser beam melting
Lasers
Mathematical morphology
Mechanical properties
Microscopy
Modulus of elasticity
Morphology
Nickel base alloys
Optimization
Particle size
Phase transitions
Plant layout
Raw materials
Scaling laws
Software
Specific gravity
Strain hardening
Superalloys
Tensile tests
Titanium alloys
Topology optimization
Ultimate tensile strength
title In Situ Investigation of Tensile Response for Inconel 718 Micro-Architected Materials Fabricated by Selective Laser Melting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Investigation%20of%20Tensile%20Response%20for%20Inconel%20718%20Micro-Architected%20Materials%20Fabricated%20by%20Selective%20Laser%20Melting&rft.jtitle=Materials&rft.au=Kyriakidis,%20Ioannis%20Filippos&rft.date=2024-09-09&rft.volume=17&rft.issue=17&rft.spage=4433&rft.pages=4433-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17174433&rft_dat=%3Cproquest_cross%3E3104541489%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103989048&rft_id=info:pmid/39274822&rfr_iscdi=true