Antimony(V) Adsorption and Partitioning by Humic Acid-Modified Ferrihydrite: Insights into Environmental Remediation and Transformation Processes

Antimony (Sb) migration in soil and water systems is predominantly governed by its adsorption onto ferrihydrite (FH), a process strongly influenced by natural organic matter. This study investigates the adsorption behavior, stability, and mechanism of FH and FH-humic acid (FH-HA) complexes on Sb(V),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-08, Vol.17 (17), p.4172
Hauptverfasser: Ding, Wei, Bao, Shenxu, Zhang, Yimin, Chen, Bo, Wang, Zhanhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page 4172
container_title Materials
container_volume 17
creator Ding, Wei
Bao, Shenxu
Zhang, Yimin
Chen, Bo
Wang, Zhanhao
description Antimony (Sb) migration in soil and water systems is predominantly governed by its adsorption onto ferrihydrite (FH), a process strongly influenced by natural organic matter. This study investigates the adsorption behavior, stability, and mechanism of FH and FH-humic acid (FH-HA) complexes on Sb(V), along with the fate of adsorbed Sb(V) during FH aging. Batch adsorption experiments reveal that initial pH and concentration significantly influence Sb(V) sorption. Lower pH levels decrease adsorption, while higher concentrations enhance it. Sb(V) adsorption increases with prolonged contact time, with FH exhibiting a higher adsorption capacity than FH-HA complexes. Incorporating HA onto FH surfaces reduces reactive adsorption sites, decreasing Sb(V) adsorption. Adsorbed FH-HA complexes exhibit a higher specific surface area than co-precipitated FH-HA, demonstrating stronger Sb(V) adsorption capacity under various conditions. X-ray photoelectron spectroscopy (XPS) confirms that Sb(V) adsorption primarily occurs through ligand exchange, forming Fe-O-Sb complexes. HA inhibits the migration of Sb(V), thereby enhancing its retention within the FH and FH-HA complexes. During FH transformation, a portion of Sb(V) may replace Fe(III) within converted iron minerals. However, the combination of relatively high adsorption capacity and significantly lower desorption rates makes adsorbed FH-HA complexes promising candidates for sustained Sb adsorption over extended periods. These findings enhance our understanding of Sb(V) behavior and offer insights for effective remediation strategies in complex environmental systems.
doi_str_mv 10.3390/ma17174172
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3104541358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103989172</sourcerecordid><originalsourceid>FETCH-LOGICAL-p205t-53b47af3e1ca8a4508241cf6159df28bf1d8c38566d6da3c7ec0c0fb44624d273</originalsourceid><addsrcrecordid>eNpdkMtKAzEUhoMottRufAAJuKmL0cllLnFXSmsLFYtUtyWTZNqUTlKTjDCP4Rs7pVXEszkXPn7-8wNwjeJ7Qlj8UHGUoYyiDJ-BLmIsjRCj9PzP3AF977dxW4SgHLNL0CEMZzRJcRd8DU3QlTXN4P0ODqW3bh-0NZAbCRfcBX3YtFnDooHTutICDoWW0bOVutRKwolyTm8a6XRQj3BmvF5vgofaBAvH5lM7ayplAt_BV1Upqfmv-tJx40vrquNp4axQ3it_BS5KvvOqf-o98DYZL0fTaP7yNBsN59Eex0mIElLQjJdEIcFzTpM4xxSJMkUJkyXOixLJXJA8SVOZSk5EpkQs4rKgNMVU4oz0wOCou3f2o1Y-rCrthdrtuFG29iuCYppQRJK8RW__oVtbO9O6O1CE5ayNv6VuTlRdtK-u9k5X3DWrn7DJN7djgvk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103989172</pqid></control><display><type>article</type><title>Antimony(V) Adsorption and Partitioning by Humic Acid-Modified Ferrihydrite: Insights into Environmental Remediation and Transformation Processes</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ding, Wei ; Bao, Shenxu ; Zhang, Yimin ; Chen, Bo ; Wang, Zhanhao</creator><creatorcontrib>Ding, Wei ; Bao, Shenxu ; Zhang, Yimin ; Chen, Bo ; Wang, Zhanhao</creatorcontrib><description>Antimony (Sb) migration in soil and water systems is predominantly governed by its adsorption onto ferrihydrite (FH), a process strongly influenced by natural organic matter. This study investigates the adsorption behavior, stability, and mechanism of FH and FH-humic acid (FH-HA) complexes on Sb(V), along with the fate of adsorbed Sb(V) during FH aging. Batch adsorption experiments reveal that initial pH and concentration significantly influence Sb(V) sorption. Lower pH levels decrease adsorption, while higher concentrations enhance it. Sb(V) adsorption increases with prolonged contact time, with FH exhibiting a higher adsorption capacity than FH-HA complexes. Incorporating HA onto FH surfaces reduces reactive adsorption sites, decreasing Sb(V) adsorption. Adsorbed FH-HA complexes exhibit a higher specific surface area than co-precipitated FH-HA, demonstrating stronger Sb(V) adsorption capacity under various conditions. X-ray photoelectron spectroscopy (XPS) confirms that Sb(V) adsorption primarily occurs through ligand exchange, forming Fe-O-Sb complexes. HA inhibits the migration of Sb(V), thereby enhancing its retention within the FH and FH-HA complexes. During FH transformation, a portion of Sb(V) may replace Fe(III) within converted iron minerals. However, the combination of relatively high adsorption capacity and significantly lower desorption rates makes adsorbed FH-HA complexes promising candidates for sustained Sb adsorption over extended periods. These findings enhance our understanding of Sb(V) behavior and offer insights for effective remediation strategies in complex environmental systems.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17174172</identifier><identifier>PMID: 39274562</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acids ; Adsorption ; Antimony ; Carbon ; Humic acids ; Hydroxyapatite ; Influence ; Investigations ; Iron ; Mineralogy ; Minerals ; Nitrates ; Organic matter ; Photoelectrons ; Pollutants ; Remediation ; Retention ; Sediments ; Soil remediation ; Soil water ; Surface chemistry ; X ray photoelectron spectroscopy</subject><ispartof>Materials, 2024-08, Vol.17 (17), p.4172</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1295-3389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39274562$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Wei</creatorcontrib><creatorcontrib>Bao, Shenxu</creatorcontrib><creatorcontrib>Zhang, Yimin</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Wang, Zhanhao</creatorcontrib><title>Antimony(V) Adsorption and Partitioning by Humic Acid-Modified Ferrihydrite: Insights into Environmental Remediation and Transformation Processes</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Antimony (Sb) migration in soil and water systems is predominantly governed by its adsorption onto ferrihydrite (FH), a process strongly influenced by natural organic matter. This study investigates the adsorption behavior, stability, and mechanism of FH and FH-humic acid (FH-HA) complexes on Sb(V), along with the fate of adsorbed Sb(V) during FH aging. Batch adsorption experiments reveal that initial pH and concentration significantly influence Sb(V) sorption. Lower pH levels decrease adsorption, while higher concentrations enhance it. Sb(V) adsorption increases with prolonged contact time, with FH exhibiting a higher adsorption capacity than FH-HA complexes. Incorporating HA onto FH surfaces reduces reactive adsorption sites, decreasing Sb(V) adsorption. Adsorbed FH-HA complexes exhibit a higher specific surface area than co-precipitated FH-HA, demonstrating stronger Sb(V) adsorption capacity under various conditions. X-ray photoelectron spectroscopy (XPS) confirms that Sb(V) adsorption primarily occurs through ligand exchange, forming Fe-O-Sb complexes. HA inhibits the migration of Sb(V), thereby enhancing its retention within the FH and FH-HA complexes. During FH transformation, a portion of Sb(V) may replace Fe(III) within converted iron minerals. However, the combination of relatively high adsorption capacity and significantly lower desorption rates makes adsorbed FH-HA complexes promising candidates for sustained Sb adsorption over extended periods. These findings enhance our understanding of Sb(V) behavior and offer insights for effective remediation strategies in complex environmental systems.</description><subject>Acids</subject><subject>Adsorption</subject><subject>Antimony</subject><subject>Carbon</subject><subject>Humic acids</subject><subject>Hydroxyapatite</subject><subject>Influence</subject><subject>Investigations</subject><subject>Iron</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Nitrates</subject><subject>Organic matter</subject><subject>Photoelectrons</subject><subject>Pollutants</subject><subject>Remediation</subject><subject>Retention</subject><subject>Sediments</subject><subject>Soil remediation</subject><subject>Soil water</subject><subject>Surface chemistry</subject><subject>X ray photoelectron spectroscopy</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkMtKAzEUhoMottRufAAJuKmL0cllLnFXSmsLFYtUtyWTZNqUTlKTjDCP4Rs7pVXEszkXPn7-8wNwjeJ7Qlj8UHGUoYyiDJ-BLmIsjRCj9PzP3AF977dxW4SgHLNL0CEMZzRJcRd8DU3QlTXN4P0ODqW3bh-0NZAbCRfcBX3YtFnDooHTutICDoWW0bOVutRKwolyTm8a6XRQj3BmvF5vgofaBAvH5lM7ayplAt_BV1Upqfmv-tJx40vrquNp4axQ3it_BS5KvvOqf-o98DYZL0fTaP7yNBsN59Eex0mIElLQjJdEIcFzTpM4xxSJMkUJkyXOixLJXJA8SVOZSk5EpkQs4rKgNMVU4oz0wOCou3f2o1Y-rCrthdrtuFG29iuCYppQRJK8RW__oVtbO9O6O1CE5ayNv6VuTlRdtK-u9k5X3DWrn7DJN7djgvk</recordid><startdate>20240823</startdate><enddate>20240823</enddate><creator>Ding, Wei</creator><creator>Bao, Shenxu</creator><creator>Zhang, Yimin</creator><creator>Chen, Bo</creator><creator>Wang, Zhanhao</creator><general>MDPI AG</general><scope>NPM</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1295-3389</orcidid></search><sort><creationdate>20240823</creationdate><title>Antimony(V) Adsorption and Partitioning by Humic Acid-Modified Ferrihydrite: Insights into Environmental Remediation and Transformation Processes</title><author>Ding, Wei ; Bao, Shenxu ; Zhang, Yimin ; Chen, Bo ; Wang, Zhanhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p205t-53b47af3e1ca8a4508241cf6159df28bf1d8c38566d6da3c7ec0c0fb44624d273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acids</topic><topic>Adsorption</topic><topic>Antimony</topic><topic>Carbon</topic><topic>Humic acids</topic><topic>Hydroxyapatite</topic><topic>Influence</topic><topic>Investigations</topic><topic>Iron</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Nitrates</topic><topic>Organic matter</topic><topic>Photoelectrons</topic><topic>Pollutants</topic><topic>Remediation</topic><topic>Retention</topic><topic>Sediments</topic><topic>Soil remediation</topic><topic>Soil water</topic><topic>Surface chemistry</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Wei</creatorcontrib><creatorcontrib>Bao, Shenxu</creatorcontrib><creatorcontrib>Zhang, Yimin</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Wang, Zhanhao</creatorcontrib><collection>PubMed</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Wei</au><au>Bao, Shenxu</au><au>Zhang, Yimin</au><au>Chen, Bo</au><au>Wang, Zhanhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antimony(V) Adsorption and Partitioning by Humic Acid-Modified Ferrihydrite: Insights into Environmental Remediation and Transformation Processes</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-08-23</date><risdate>2024</risdate><volume>17</volume><issue>17</issue><spage>4172</spage><pages>4172-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Antimony (Sb) migration in soil and water systems is predominantly governed by its adsorption onto ferrihydrite (FH), a process strongly influenced by natural organic matter. This study investigates the adsorption behavior, stability, and mechanism of FH and FH-humic acid (FH-HA) complexes on Sb(V), along with the fate of adsorbed Sb(V) during FH aging. Batch adsorption experiments reveal that initial pH and concentration significantly influence Sb(V) sorption. Lower pH levels decrease adsorption, while higher concentrations enhance it. Sb(V) adsorption increases with prolonged contact time, with FH exhibiting a higher adsorption capacity than FH-HA complexes. Incorporating HA onto FH surfaces reduces reactive adsorption sites, decreasing Sb(V) adsorption. Adsorbed FH-HA complexes exhibit a higher specific surface area than co-precipitated FH-HA, demonstrating stronger Sb(V) adsorption capacity under various conditions. X-ray photoelectron spectroscopy (XPS) confirms that Sb(V) adsorption primarily occurs through ligand exchange, forming Fe-O-Sb complexes. HA inhibits the migration of Sb(V), thereby enhancing its retention within the FH and FH-HA complexes. During FH transformation, a portion of Sb(V) may replace Fe(III) within converted iron minerals. However, the combination of relatively high adsorption capacity and significantly lower desorption rates makes adsorbed FH-HA complexes promising candidates for sustained Sb adsorption over extended periods. These findings enhance our understanding of Sb(V) behavior and offer insights for effective remediation strategies in complex environmental systems.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39274562</pmid><doi>10.3390/ma17174172</doi><orcidid>https://orcid.org/0000-0003-1295-3389</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-08, Vol.17 (17), p.4172
issn 1996-1944
1996-1944
language eng
recordid cdi_proquest_miscellaneous_3104541358
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acids
Adsorption
Antimony
Carbon
Humic acids
Hydroxyapatite
Influence
Investigations
Iron
Mineralogy
Minerals
Nitrates
Organic matter
Photoelectrons
Pollutants
Remediation
Retention
Sediments
Soil remediation
Soil water
Surface chemistry
X ray photoelectron spectroscopy
title Antimony(V) Adsorption and Partitioning by Humic Acid-Modified Ferrihydrite: Insights into Environmental Remediation and Transformation Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A39%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antimony(V)%20Adsorption%20and%20Partitioning%20by%20Humic%20Acid-Modified%20Ferrihydrite:%20Insights%20into%20Environmental%20Remediation%20and%20Transformation%20Processes&rft.jtitle=Materials&rft.au=Ding,%20Wei&rft.date=2024-08-23&rft.volume=17&rft.issue=17&rft.spage=4172&rft.pages=4172-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17174172&rft_dat=%3Cproquest_pubme%3E3103989172%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103989172&rft_id=info:pmid/39274562&rfr_iscdi=true