In Situ Fabrication of TiC/Ti-Matrix Composites by Laser Directed Energy Deposition

In this study, crack-free TiC/Ti composites with TiC content ranging from 0 to 15 wt.% were successfully fabricated using Direct Energy Deposition with a dual-feeder system that concomitantly delivered different amounts of both constituents into a high-power laser beam. The samples were investigated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-08, Vol.17 (17), p.4284
Hauptverfasser: Mihai, Sabin, Baciu, Florin, Radu, Robert, Chioibasu, Diana, Popescu, Andrei C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page 4284
container_title Materials
container_volume 17
creator Mihai, Sabin
Baciu, Florin
Radu, Robert
Chioibasu, Diana
Popescu, Andrei C
description In this study, crack-free TiC/Ti composites with TiC content ranging from 0 to 15 wt.% were successfully fabricated using Direct Energy Deposition with a dual-feeder system that concomitantly delivered different amounts of both constituents into a high-power laser beam. The samples were investigated to evaluate the morphologies and distribution behavior of TiC. The microhardness values of the samples obtained under optimal processing conditions increased from 192 ± 5.3 HV (pure Ti) to 300 ± 14.2 HV (Ti + wt.% 15 TiC). Also, TiC has a significant impact on the Ti matrix, increasing the strength of TMCs up to 725 ± 5.4 MPa, while the elongation drastically decreased to 0.62 ± 0.04%. The wear rate is not proportionally affected by the rise content of TiC reinforcement; the hypoeutectic region of TMCs exhibited a wear rate of 2.45 mm /N·m (Ti + wt.% 3 TiC) and a friction coefficient of 0.48 compared to the ones from the hypereutectic region, which measured a wear rate of 3.02 mm /N·m (Ti + wt.% 15 TiC) and a friction coefficient of 0.63. The improved values of mechanical properties in the case of TMCs as compared to pure Ti are provided due to the solid solution strengthening of carbon and the fine grain strengthening. This work outlines a method for changing TiC morphologies to improve the hardness and tensile strength of TMCs fabricated starting from micro-scale powder.
doi_str_mv 10.3390/ma17174284
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3104541232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103995448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-a2b264576930f7c79cb6b462bfae808d32eeb83a9024d6069ccf52d83dd2e9163</originalsourceid><addsrcrecordid>eNpd0E1Lw0AQBuBFFFtqL_4AWfAiQux-ZZM9StqqUPHQeg6bzUS2NNm6m4D996a2fuBcZg7PDMOL0CUld5wrMqk1TWgiWCpO0JAqJSOqhDj9Mw_QOIQ16YtzmjJ1jgZcsUTIRAzR8qnBS9t2eK4Lb41urWuwq_DKZpOVjZ516-0Hzly9dcG2EHCxwwsdwOOp9WBaKPGsAf-2w1P4Iv3-BTqr9CbA-NhH6HU-W2WP0eLl4Sm7X0SGCdJGmhVMijiRipMqMYkyhSyEZEWlISVpyRlAkXKtCBOlJFIZU8WsTHlZMlBU8hG6OdzdevfeQWjz2gYDm41uwHUh55SIWFDGWU-v_9G163zTf7dXXKlYiLRXtwdlvAvBQ5Vvva213-WU5Pu089-0e3x1PNkVNZQ_9Dtb_gnbz3fI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103995448</pqid></control><display><type>article</type><title>In Situ Fabrication of TiC/Ti-Matrix Composites by Laser Directed Energy Deposition</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mihai, Sabin ; Baciu, Florin ; Radu, Robert ; Chioibasu, Diana ; Popescu, Andrei C</creator><creatorcontrib>Mihai, Sabin ; Baciu, Florin ; Radu, Robert ; Chioibasu, Diana ; Popescu, Andrei C</creatorcontrib><description>In this study, crack-free TiC/Ti composites with TiC content ranging from 0 to 15 wt.% were successfully fabricated using Direct Energy Deposition with a dual-feeder system that concomitantly delivered different amounts of both constituents into a high-power laser beam. The samples were investigated to evaluate the morphologies and distribution behavior of TiC. The microhardness values of the samples obtained under optimal processing conditions increased from 192 ± 5.3 HV (pure Ti) to 300 ± 14.2 HV (Ti + wt.% 15 TiC). Also, TiC has a significant impact on the Ti matrix, increasing the strength of TMCs up to 725 ± 5.4 MPa, while the elongation drastically decreased to 0.62 ± 0.04%. The wear rate is not proportionally affected by the rise content of TiC reinforcement; the hypoeutectic region of TMCs exhibited a wear rate of 2.45 mm /N·m (Ti + wt.% 3 TiC) and a friction coefficient of 0.48 compared to the ones from the hypereutectic region, which measured a wear rate of 3.02 mm /N·m (Ti + wt.% 15 TiC) and a friction coefficient of 0.63. The improved values of mechanical properties in the case of TMCs as compared to pure Ti are provided due to the solid solution strengthening of carbon and the fine grain strengthening. This work outlines a method for changing TiC morphologies to improve the hardness and tensile strength of TMCs fabricated starting from micro-scale powder.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17174284</identifier><identifier>PMID: 39274674</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Coefficient of friction ; Composite materials ; Corrosion resistance ; Deposition ; Energy consumption ; Energy distribution ; Grain boundaries ; High power lasers ; Laser beams ; Lasers ; Manufacturing ; Mechanical properties ; Microhardness ; Morphology ; Particulate composites ; Powder metallurgy ; Solid solutions ; Solution strengthening ; Surface hardness ; Tensile strength ; Titanium ; Titanium carbide ; Wear rate</subject><ispartof>Materials, 2024-08, Vol.17 (17), p.4284</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c240t-a2b264576930f7c79cb6b462bfae808d32eeb83a9024d6069ccf52d83dd2e9163</cites><orcidid>0000-0002-0574-6149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39274674$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mihai, Sabin</creatorcontrib><creatorcontrib>Baciu, Florin</creatorcontrib><creatorcontrib>Radu, Robert</creatorcontrib><creatorcontrib>Chioibasu, Diana</creatorcontrib><creatorcontrib>Popescu, Andrei C</creatorcontrib><title>In Situ Fabrication of TiC/Ti-Matrix Composites by Laser Directed Energy Deposition</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>In this study, crack-free TiC/Ti composites with TiC content ranging from 0 to 15 wt.% were successfully fabricated using Direct Energy Deposition with a dual-feeder system that concomitantly delivered different amounts of both constituents into a high-power laser beam. The samples were investigated to evaluate the morphologies and distribution behavior of TiC. The microhardness values of the samples obtained under optimal processing conditions increased from 192 ± 5.3 HV (pure Ti) to 300 ± 14.2 HV (Ti + wt.% 15 TiC). Also, TiC has a significant impact on the Ti matrix, increasing the strength of TMCs up to 725 ± 5.4 MPa, while the elongation drastically decreased to 0.62 ± 0.04%. The wear rate is not proportionally affected by the rise content of TiC reinforcement; the hypoeutectic region of TMCs exhibited a wear rate of 2.45 mm /N·m (Ti + wt.% 3 TiC) and a friction coefficient of 0.48 compared to the ones from the hypereutectic region, which measured a wear rate of 3.02 mm /N·m (Ti + wt.% 15 TiC) and a friction coefficient of 0.63. The improved values of mechanical properties in the case of TMCs as compared to pure Ti are provided due to the solid solution strengthening of carbon and the fine grain strengthening. This work outlines a method for changing TiC morphologies to improve the hardness and tensile strength of TMCs fabricated starting from micro-scale powder.</description><subject>Coefficient of friction</subject><subject>Composite materials</subject><subject>Corrosion resistance</subject><subject>Deposition</subject><subject>Energy consumption</subject><subject>Energy distribution</subject><subject>Grain boundaries</subject><subject>High power lasers</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Microhardness</subject><subject>Morphology</subject><subject>Particulate composites</subject><subject>Powder metallurgy</subject><subject>Solid solutions</subject><subject>Solution strengthening</subject><subject>Surface hardness</subject><subject>Tensile strength</subject><subject>Titanium</subject><subject>Titanium carbide</subject><subject>Wear rate</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpd0E1Lw0AQBuBFFFtqL_4AWfAiQux-ZZM9StqqUPHQeg6bzUS2NNm6m4D996a2fuBcZg7PDMOL0CUld5wrMqk1TWgiWCpO0JAqJSOqhDj9Mw_QOIQ16YtzmjJ1jgZcsUTIRAzR8qnBS9t2eK4Lb41urWuwq_DKZpOVjZ516-0Hzly9dcG2EHCxwwsdwOOp9WBaKPGsAf-2w1P4Iv3-BTqr9CbA-NhH6HU-W2WP0eLl4Sm7X0SGCdJGmhVMijiRipMqMYkyhSyEZEWlISVpyRlAkXKtCBOlJFIZU8WsTHlZMlBU8hG6OdzdevfeQWjz2gYDm41uwHUh55SIWFDGWU-v_9G163zTf7dXXKlYiLRXtwdlvAvBQ5Vvva213-WU5Pu089-0e3x1PNkVNZQ_9Dtb_gnbz3fI</recordid><startdate>20240829</startdate><enddate>20240829</enddate><creator>Mihai, Sabin</creator><creator>Baciu, Florin</creator><creator>Radu, Robert</creator><creator>Chioibasu, Diana</creator><creator>Popescu, Andrei C</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0574-6149</orcidid></search><sort><creationdate>20240829</creationdate><title>In Situ Fabrication of TiC/Ti-Matrix Composites by Laser Directed Energy Deposition</title><author>Mihai, Sabin ; Baciu, Florin ; Radu, Robert ; Chioibasu, Diana ; Popescu, Andrei C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-a2b264576930f7c79cb6b462bfae808d32eeb83a9024d6069ccf52d83dd2e9163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coefficient of friction</topic><topic>Composite materials</topic><topic>Corrosion resistance</topic><topic>Deposition</topic><topic>Energy consumption</topic><topic>Energy distribution</topic><topic>Grain boundaries</topic><topic>High power lasers</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Microhardness</topic><topic>Morphology</topic><topic>Particulate composites</topic><topic>Powder metallurgy</topic><topic>Solid solutions</topic><topic>Solution strengthening</topic><topic>Surface hardness</topic><topic>Tensile strength</topic><topic>Titanium</topic><topic>Titanium carbide</topic><topic>Wear rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mihai, Sabin</creatorcontrib><creatorcontrib>Baciu, Florin</creatorcontrib><creatorcontrib>Radu, Robert</creatorcontrib><creatorcontrib>Chioibasu, Diana</creatorcontrib><creatorcontrib>Popescu, Andrei C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mihai, Sabin</au><au>Baciu, Florin</au><au>Radu, Robert</au><au>Chioibasu, Diana</au><au>Popescu, Andrei C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Fabrication of TiC/Ti-Matrix Composites by Laser Directed Energy Deposition</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-08-29</date><risdate>2024</risdate><volume>17</volume><issue>17</issue><spage>4284</spage><pages>4284-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>In this study, crack-free TiC/Ti composites with TiC content ranging from 0 to 15 wt.% were successfully fabricated using Direct Energy Deposition with a dual-feeder system that concomitantly delivered different amounts of both constituents into a high-power laser beam. The samples were investigated to evaluate the morphologies and distribution behavior of TiC. The microhardness values of the samples obtained under optimal processing conditions increased from 192 ± 5.3 HV (pure Ti) to 300 ± 14.2 HV (Ti + wt.% 15 TiC). Also, TiC has a significant impact on the Ti matrix, increasing the strength of TMCs up to 725 ± 5.4 MPa, while the elongation drastically decreased to 0.62 ± 0.04%. The wear rate is not proportionally affected by the rise content of TiC reinforcement; the hypoeutectic region of TMCs exhibited a wear rate of 2.45 mm /N·m (Ti + wt.% 3 TiC) and a friction coefficient of 0.48 compared to the ones from the hypereutectic region, which measured a wear rate of 3.02 mm /N·m (Ti + wt.% 15 TiC) and a friction coefficient of 0.63. The improved values of mechanical properties in the case of TMCs as compared to pure Ti are provided due to the solid solution strengthening of carbon and the fine grain strengthening. This work outlines a method for changing TiC morphologies to improve the hardness and tensile strength of TMCs fabricated starting from micro-scale powder.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39274674</pmid><doi>10.3390/ma17174284</doi><orcidid>https://orcid.org/0000-0002-0574-6149</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-08, Vol.17 (17), p.4284
issn 1996-1944
1996-1944
language eng
recordid cdi_proquest_miscellaneous_3104541232
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Coefficient of friction
Composite materials
Corrosion resistance
Deposition
Energy consumption
Energy distribution
Grain boundaries
High power lasers
Laser beams
Lasers
Manufacturing
Mechanical properties
Microhardness
Morphology
Particulate composites
Powder metallurgy
Solid solutions
Solution strengthening
Surface hardness
Tensile strength
Titanium
Titanium carbide
Wear rate
title In Situ Fabrication of TiC/Ti-Matrix Composites by Laser Directed Energy Deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Fabrication%20of%20TiC/Ti-Matrix%20Composites%20by%20Laser%20Directed%20Energy%20Deposition&rft.jtitle=Materials&rft.au=Mihai,%20Sabin&rft.date=2024-08-29&rft.volume=17&rft.issue=17&rft.spage=4284&rft.pages=4284-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17174284&rft_dat=%3Cproquest_cross%3E3103995448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103995448&rft_id=info:pmid/39274674&rfr_iscdi=true