Sodium Tungstate Promotes Neurite Outgrowth and Confers Neuroprotection in Neuro2a and SH-SY5Y Cells

Sodium tungstate (Na WO ) normalizes glucose metabolism in the liver and muscle, activating the Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. Because this pathway controls neuronal survival and differentiation, we investigated the effects of Na WO in mous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2024-08, Vol.25 (17), p.9150
Hauptverfasser: Montero-Martin, Nora, Girón, María D, Vílchez, José D, Salto, Rafael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page 9150
container_title International journal of molecular sciences
container_volume 25
creator Montero-Martin, Nora
Girón, María D
Vílchez, José D
Salto, Rafael
description Sodium tungstate (Na WO ) normalizes glucose metabolism in the liver and muscle, activating the Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. Because this pathway controls neuronal survival and differentiation, we investigated the effects of Na WO in mouse Neuro2a and human SH-SY5Y neuroblastoma monolayer cell cultures. Na WO promotes differentiation to cholinergic neurites via an increased G1/G0 cell cycle in response to the synergic activation of the Phosphatidylinositol 3-kinase (PI3K/Akt) and ERK1/2 signaling pathways. In Neuro2a cells, Na WO increases protein synthesis by activating the mechanistic target of rapamycin (mTOR) and S6K kinases and GLUT3-mediated glucose uptake, providing the energy and protein synthesis needed for neurite outgrowth. Furthermore, Na WO increased the expression of myocyte enhancer factor 2D (MEF2D), a member of a family of transcription factors involved in neuronal survival and plasticity, through a post-translational mechanism that increases its half-life. Site-directed mutations of residues involved in the sumoylation of the protein abrogated the positive effects of Na WO on the MEF2D-dependent transcriptional activity. In addition, the neuroprotective effects of Na WO were evaluated in the presence of advanced glycation end products (AGEs). AGEs diminished neurite differentiation owing to a reduction in the G1/G0 cell cycle, concomitant with lower expression of MEF2D and the GLUT3 transporter. These negative effects were corrected in both cell lines after incubation with Na WO These findings support the role of Na WO in neuronal plasticity, albeit further experiments using 3D cultures, and animal models will be needed to validate the therapeutic potential of the compound.
doi_str_mv 10.3390/ijms25179150
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3104538915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104538915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-691450b8322795aaec10bea3dc20a4397c3da044cab01325b78fe65a978be05f3</originalsourceid><addsrcrecordid>eNpd0M1LwzAYBvAgipsfN89S8OLBapI3WZujFHXCcMLmYaeStunsWJuZD8T_3rhOGZ4S3vx4efIgdEHwLYDAd82qtZSTRBCOD9CQMEpjjEfJ4d59gE6sXWFMgXJxjAYgaAKEwBBVM101vo3mvltaJ52KXo1utVM2elHeNGEw9W5p9Kd7j2RXRZnuamX6V70xQZau0V3UdP2Iyi2bjePZgi-iTK3X9gwd1XJt1fnuPEVvjw_zbBxPpk_P2f0kLiljLh4JwjguUqA0EVxKVRJcKAlVSbFkIJISKokZK2WBSfhJkaS1GnEpkrRQmNdwiq77vSHXh1fW5W1jy5BAdkp7mwPBjEMamgr06h9daW-6kG6rCABPaVA3vSqNttaoOt-YppXmKyc4_2k_328_8MvdUl-0qvrDv3XDN19Rf0I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104133582</pqid></control><display><type>article</type><title>Sodium Tungstate Promotes Neurite Outgrowth and Confers Neuroprotection in Neuro2a and SH-SY5Y Cells</title><source>MEDLINE</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Montero-Martin, Nora ; Girón, María D ; Vílchez, José D ; Salto, Rafael</creator><creatorcontrib>Montero-Martin, Nora ; Girón, María D ; Vílchez, José D ; Salto, Rafael</creatorcontrib><description>Sodium tungstate (Na WO ) normalizes glucose metabolism in the liver and muscle, activating the Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. Because this pathway controls neuronal survival and differentiation, we investigated the effects of Na WO in mouse Neuro2a and human SH-SY5Y neuroblastoma monolayer cell cultures. Na WO promotes differentiation to cholinergic neurites via an increased G1/G0 cell cycle in response to the synergic activation of the Phosphatidylinositol 3-kinase (PI3K/Akt) and ERK1/2 signaling pathways. In Neuro2a cells, Na WO increases protein synthesis by activating the mechanistic target of rapamycin (mTOR) and S6K kinases and GLUT3-mediated glucose uptake, providing the energy and protein synthesis needed for neurite outgrowth. Furthermore, Na WO increased the expression of myocyte enhancer factor 2D (MEF2D), a member of a family of transcription factors involved in neuronal survival and plasticity, through a post-translational mechanism that increases its half-life. Site-directed mutations of residues involved in the sumoylation of the protein abrogated the positive effects of Na WO on the MEF2D-dependent transcriptional activity. In addition, the neuroprotective effects of Na WO were evaluated in the presence of advanced glycation end products (AGEs). AGEs diminished neurite differentiation owing to a reduction in the G1/G0 cell cycle, concomitant with lower expression of MEF2D and the GLUT3 transporter. These negative effects were corrected in both cell lines after incubation with Na WO These findings support the role of Na WO in neuronal plasticity, albeit further experiments using 3D cultures, and animal models will be needed to validate the therapeutic potential of the compound.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms25179150</identifier><identifier>PMID: 39273113</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Animals ; Cell cycle ; Cell Differentiation - drug effects ; Cell growth ; Cell Line, Tumor ; Genes ; Glucose ; Humans ; Kinases ; Liver ; Mice ; Musculoskeletal system ; Nervous system ; Neurites - drug effects ; Neurites - metabolism ; Neurobiology ; Neuroblastoma ; Neuronal Outgrowth - drug effects ; Neurons - drug effects ; Neurons - metabolism ; Neuroprotection - drug effects ; Neuroprotective Agents - pharmacology ; Neurosciences ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphorylation ; Senescence ; Signal Transduction - drug effects ; Tungsten Compounds - pharmacology</subject><ispartof>International journal of molecular sciences, 2024-08, Vol.25 (17), p.9150</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-691450b8322795aaec10bea3dc20a4397c3da044cab01325b78fe65a978be05f3</cites><orcidid>0000-0002-7044-3611 ; 0000-0003-3256-8525 ; 0009-0002-3698-5027 ; 0000-0001-9638-988X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39273113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Montero-Martin, Nora</creatorcontrib><creatorcontrib>Girón, María D</creatorcontrib><creatorcontrib>Vílchez, José D</creatorcontrib><creatorcontrib>Salto, Rafael</creatorcontrib><title>Sodium Tungstate Promotes Neurite Outgrowth and Confers Neuroprotection in Neuro2a and SH-SY5Y Cells</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Sodium tungstate (Na WO ) normalizes glucose metabolism in the liver and muscle, activating the Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. Because this pathway controls neuronal survival and differentiation, we investigated the effects of Na WO in mouse Neuro2a and human SH-SY5Y neuroblastoma monolayer cell cultures. Na WO promotes differentiation to cholinergic neurites via an increased G1/G0 cell cycle in response to the synergic activation of the Phosphatidylinositol 3-kinase (PI3K/Akt) and ERK1/2 signaling pathways. In Neuro2a cells, Na WO increases protein synthesis by activating the mechanistic target of rapamycin (mTOR) and S6K kinases and GLUT3-mediated glucose uptake, providing the energy and protein synthesis needed for neurite outgrowth. Furthermore, Na WO increased the expression of myocyte enhancer factor 2D (MEF2D), a member of a family of transcription factors involved in neuronal survival and plasticity, through a post-translational mechanism that increases its half-life. Site-directed mutations of residues involved in the sumoylation of the protein abrogated the positive effects of Na WO on the MEF2D-dependent transcriptional activity. In addition, the neuroprotective effects of Na WO were evaluated in the presence of advanced glycation end products (AGEs). AGEs diminished neurite differentiation owing to a reduction in the G1/G0 cell cycle, concomitant with lower expression of MEF2D and the GLUT3 transporter. These negative effects were corrected in both cell lines after incubation with Na WO These findings support the role of Na WO in neuronal plasticity, albeit further experiments using 3D cultures, and animal models will be needed to validate the therapeutic potential of the compound.</description><subject>Animals</subject><subject>Cell cycle</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Genes</subject><subject>Glucose</subject><subject>Humans</subject><subject>Kinases</subject><subject>Liver</subject><subject>Mice</subject><subject>Musculoskeletal system</subject><subject>Nervous system</subject><subject>Neurites - drug effects</subject><subject>Neurites - metabolism</subject><subject>Neurobiology</subject><subject>Neuroblastoma</subject><subject>Neuronal Outgrowth - drug effects</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neuroprotection - drug effects</subject><subject>Neuroprotective Agents - pharmacology</subject><subject>Neurosciences</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>Senescence</subject><subject>Signal Transduction - drug effects</subject><subject>Tungsten Compounds - pharmacology</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpd0M1LwzAYBvAgipsfN89S8OLBapI3WZujFHXCcMLmYaeStunsWJuZD8T_3rhOGZ4S3vx4efIgdEHwLYDAd82qtZSTRBCOD9CQMEpjjEfJ4d59gE6sXWFMgXJxjAYgaAKEwBBVM101vo3mvltaJ52KXo1utVM2elHeNGEw9W5p9Kd7j2RXRZnuamX6V70xQZau0V3UdP2Iyi2bjePZgi-iTK3X9gwd1XJt1fnuPEVvjw_zbBxPpk_P2f0kLiljLh4JwjguUqA0EVxKVRJcKAlVSbFkIJISKokZK2WBSfhJkaS1GnEpkrRQmNdwiq77vSHXh1fW5W1jy5BAdkp7mwPBjEMamgr06h9daW-6kG6rCABPaVA3vSqNttaoOt-YppXmKyc4_2k_328_8MvdUl-0qvrDv3XDN19Rf0I</recordid><startdate>20240823</startdate><enddate>20240823</enddate><creator>Montero-Martin, Nora</creator><creator>Girón, María D</creator><creator>Vílchez, José D</creator><creator>Salto, Rafael</creator><general>MDPI AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7044-3611</orcidid><orcidid>https://orcid.org/0000-0003-3256-8525</orcidid><orcidid>https://orcid.org/0009-0002-3698-5027</orcidid><orcidid>https://orcid.org/0000-0001-9638-988X</orcidid></search><sort><creationdate>20240823</creationdate><title>Sodium Tungstate Promotes Neurite Outgrowth and Confers Neuroprotection in Neuro2a and SH-SY5Y Cells</title><author>Montero-Martin, Nora ; Girón, María D ; Vílchez, José D ; Salto, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-691450b8322795aaec10bea3dc20a4397c3da044cab01325b78fe65a978be05f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Cell cycle</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Genes</topic><topic>Glucose</topic><topic>Humans</topic><topic>Kinases</topic><topic>Liver</topic><topic>Mice</topic><topic>Musculoskeletal system</topic><topic>Nervous system</topic><topic>Neurites - drug effects</topic><topic>Neurites - metabolism</topic><topic>Neurobiology</topic><topic>Neuroblastoma</topic><topic>Neuronal Outgrowth - drug effects</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neuroprotection - drug effects</topic><topic>Neuroprotective Agents - pharmacology</topic><topic>Neurosciences</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>Senescence</topic><topic>Signal Transduction - drug effects</topic><topic>Tungsten Compounds - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montero-Martin, Nora</creatorcontrib><creatorcontrib>Girón, María D</creatorcontrib><creatorcontrib>Vílchez, José D</creatorcontrib><creatorcontrib>Salto, Rafael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montero-Martin, Nora</au><au>Girón, María D</au><au>Vílchez, José D</au><au>Salto, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sodium Tungstate Promotes Neurite Outgrowth and Confers Neuroprotection in Neuro2a and SH-SY5Y Cells</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2024-08-23</date><risdate>2024</risdate><volume>25</volume><issue>17</issue><spage>9150</spage><pages>9150-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Sodium tungstate (Na WO ) normalizes glucose metabolism in the liver and muscle, activating the Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. Because this pathway controls neuronal survival and differentiation, we investigated the effects of Na WO in mouse Neuro2a and human SH-SY5Y neuroblastoma monolayer cell cultures. Na WO promotes differentiation to cholinergic neurites via an increased G1/G0 cell cycle in response to the synergic activation of the Phosphatidylinositol 3-kinase (PI3K/Akt) and ERK1/2 signaling pathways. In Neuro2a cells, Na WO increases protein synthesis by activating the mechanistic target of rapamycin (mTOR) and S6K kinases and GLUT3-mediated glucose uptake, providing the energy and protein synthesis needed for neurite outgrowth. Furthermore, Na WO increased the expression of myocyte enhancer factor 2D (MEF2D), a member of a family of transcription factors involved in neuronal survival and plasticity, through a post-translational mechanism that increases its half-life. Site-directed mutations of residues involved in the sumoylation of the protein abrogated the positive effects of Na WO on the MEF2D-dependent transcriptional activity. In addition, the neuroprotective effects of Na WO were evaluated in the presence of advanced glycation end products (AGEs). AGEs diminished neurite differentiation owing to a reduction in the G1/G0 cell cycle, concomitant with lower expression of MEF2D and the GLUT3 transporter. These negative effects were corrected in both cell lines after incubation with Na WO These findings support the role of Na WO in neuronal plasticity, albeit further experiments using 3D cultures, and animal models will be needed to validate the therapeutic potential of the compound.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39273113</pmid><doi>10.3390/ijms25179150</doi><orcidid>https://orcid.org/0000-0002-7044-3611</orcidid><orcidid>https://orcid.org/0000-0003-3256-8525</orcidid><orcidid>https://orcid.org/0009-0002-3698-5027</orcidid><orcidid>https://orcid.org/0000-0001-9638-988X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2024-08, Vol.25 (17), p.9150
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_proquest_miscellaneous_3104538915
source MEDLINE; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Cell cycle
Cell Differentiation - drug effects
Cell growth
Cell Line, Tumor
Genes
Glucose
Humans
Kinases
Liver
Mice
Musculoskeletal system
Nervous system
Neurites - drug effects
Neurites - metabolism
Neurobiology
Neuroblastoma
Neuronal Outgrowth - drug effects
Neurons - drug effects
Neurons - metabolism
Neuroprotection - drug effects
Neuroprotective Agents - pharmacology
Neurosciences
Phosphatidylinositol 3-Kinases - metabolism
Phosphorylation
Senescence
Signal Transduction - drug effects
Tungsten Compounds - pharmacology
title Sodium Tungstate Promotes Neurite Outgrowth and Confers Neuroprotection in Neuro2a and SH-SY5Y Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sodium%20Tungstate%20Promotes%20Neurite%20Outgrowth%20and%20Confers%20Neuroprotection%20in%20Neuro2a%20and%20SH-SY5Y%20Cells&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Montero-Martin,%20Nora&rft.date=2024-08-23&rft.volume=25&rft.issue=17&rft.spage=9150&rft.pages=9150-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms25179150&rft_dat=%3Cproquest_cross%3E3104538915%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104133582&rft_id=info:pmid/39273113&rfr_iscdi=true