Video object segmentation and tracking using region-based statistics

Two new region-based methods for video object tracking using active contours are presented. The first method is based on the assumption that the color histogram of the tracked object is nearly stationary from frame to frame. The proposed method is based on minimizing the color histogram difference b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing. Image communication 2007-11, Vol.22 (10), p.891-905
1. Verfasser: ERDEM, Cigdem Eroglu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 905
container_issue 10
container_start_page 891
container_title Signal processing. Image communication
container_volume 22
creator ERDEM, Cigdem Eroglu
description Two new region-based methods for video object tracking using active contours are presented. The first method is based on the assumption that the color histogram of the tracked object is nearly stationary from frame to frame. The proposed method is based on minimizing the color histogram difference between the estimated objects at a reference frame and the current frame using a dynamic programming framework. The second method is defined for scenes where there is an out-of-focus blur difference between the object of interest and the background. In such scenes, the proposed “defocus energy” can be utilized for automatic segmentation of the object boundary, and it can be combined with the histogram method to track the object more efficiently. Experiments demonstrate that the proposed methods are successful in difficult scenes with significant background clutter.
doi_str_mv 10.1016/j.image.2007.09.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31040043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0923596507001117</els_id><sourcerecordid>31040043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-554d33706785c07962352c3d5b6ef1f6184922247686c2ca147719c13a08fd5d3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1iywJZwtmM7HhgQ3xISC7Barn2pXNoEfCkS_56UVmJjuRvuee90D2OnHCoOXF8sqrTyc6wEgKnAVgB8j014Y2wptDH7bAJWyFJZrQ7ZEdECAEQNdsJu3lLEvuhnCwxDQThfYTf4IfVd4btYDNmH99TNizVtasb5OClnnjAWtOFoSIGO2UHrl4Qnuz5lr3e3L9cP5dPz_eP11VMZpK6HUqk6SmlAm0YFMFYLqUSQUc00trzVvKmtEKI2utFBBM9rY7gNXHpo2qiinLLz7d6P3H-ukQa3ShRwufQd9mtykkMNUMsRlFsw5J4oY-s-8mgofzsObmPMLdyvMbcx5sC60diYOtut9xT8ss2-C4n-orZRtuFq5C63HI6_fiXMjkLCLmBMebToYp_-vfMDF8OBGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31040043</pqid></control><display><type>article</type><title>Video object segmentation and tracking using region-based statistics</title><source>Elsevier ScienceDirect Journals</source><creator>ERDEM, Cigdem Eroglu</creator><creatorcontrib>ERDEM, Cigdem Eroglu</creatorcontrib><description>Two new region-based methods for video object tracking using active contours are presented. The first method is based on the assumption that the color histogram of the tracked object is nearly stationary from frame to frame. The proposed method is based on minimizing the color histogram difference between the estimated objects at a reference frame and the current frame using a dynamic programming framework. The second method is defined for scenes where there is an out-of-focus blur difference between the object of interest and the background. In such scenes, the proposed “defocus energy” can be utilized for automatic segmentation of the object boundary, and it can be combined with the histogram method to track the object more efficiently. Experiments demonstrate that the proposed methods are successful in difficult scenes with significant background clutter.</description><identifier>ISSN: 0923-5965</identifier><identifier>EISSN: 1879-2677</identifier><identifier>DOI: 10.1016/j.image.2007.09.001</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Active contours ; Applied sciences ; Curve evolution ; Defocus ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Histogram matching ; Image processing ; Information, signal and communications theory ; Object tracking ; Pattern recognition ; Selective focus ; Signal and communications theory ; Signal processing ; Signal, noise ; Telecommunications and information theory</subject><ispartof>Signal processing. Image communication, 2007-11, Vol.22 (10), p.891-905</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-554d33706785c07962352c3d5b6ef1f6184922247686c2ca147719c13a08fd5d3</citedby><cites>FETCH-LOGICAL-c364t-554d33706785c07962352c3d5b6ef1f6184922247686c2ca147719c13a08fd5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0923596507001117$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19859815$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ERDEM, Cigdem Eroglu</creatorcontrib><title>Video object segmentation and tracking using region-based statistics</title><title>Signal processing. Image communication</title><description>Two new region-based methods for video object tracking using active contours are presented. The first method is based on the assumption that the color histogram of the tracked object is nearly stationary from frame to frame. The proposed method is based on minimizing the color histogram difference between the estimated objects at a reference frame and the current frame using a dynamic programming framework. The second method is defined for scenes where there is an out-of-focus blur difference between the object of interest and the background. In such scenes, the proposed “defocus energy” can be utilized for automatic segmentation of the object boundary, and it can be combined with the histogram method to track the object more efficiently. Experiments demonstrate that the proposed methods are successful in difficult scenes with significant background clutter.</description><subject>Active contours</subject><subject>Applied sciences</subject><subject>Curve evolution</subject><subject>Defocus</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Histogram matching</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Object tracking</subject><subject>Pattern recognition</subject><subject>Selective focus</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><issn>0923-5965</issn><issn>1879-2677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1iywJZwtmM7HhgQ3xISC7Barn2pXNoEfCkS_56UVmJjuRvuee90D2OnHCoOXF8sqrTyc6wEgKnAVgB8j014Y2wptDH7bAJWyFJZrQ7ZEdECAEQNdsJu3lLEvuhnCwxDQThfYTf4IfVd4btYDNmH99TNizVtasb5OClnnjAWtOFoSIGO2UHrl4Qnuz5lr3e3L9cP5dPz_eP11VMZpK6HUqk6SmlAm0YFMFYLqUSQUc00trzVvKmtEKI2utFBBM9rY7gNXHpo2qiinLLz7d6P3H-ukQa3ShRwufQd9mtykkMNUMsRlFsw5J4oY-s-8mgofzsObmPMLdyvMbcx5sC60diYOtut9xT8ss2-C4n-orZRtuFq5C63HI6_fiXMjkLCLmBMebToYp_-vfMDF8OBGQ</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>ERDEM, Cigdem Eroglu</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20071101</creationdate><title>Video object segmentation and tracking using region-based statistics</title><author>ERDEM, Cigdem Eroglu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-554d33706785c07962352c3d5b6ef1f6184922247686c2ca147719c13a08fd5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Active contours</topic><topic>Applied sciences</topic><topic>Curve evolution</topic><topic>Defocus</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Histogram matching</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Object tracking</topic><topic>Pattern recognition</topic><topic>Selective focus</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ERDEM, Cigdem Eroglu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Signal processing. Image communication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ERDEM, Cigdem Eroglu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Video object segmentation and tracking using region-based statistics</atitle><jtitle>Signal processing. Image communication</jtitle><date>2007-11-01</date><risdate>2007</risdate><volume>22</volume><issue>10</issue><spage>891</spage><epage>905</epage><pages>891-905</pages><issn>0923-5965</issn><eissn>1879-2677</eissn><abstract>Two new region-based methods for video object tracking using active contours are presented. The first method is based on the assumption that the color histogram of the tracked object is nearly stationary from frame to frame. The proposed method is based on minimizing the color histogram difference between the estimated objects at a reference frame and the current frame using a dynamic programming framework. The second method is defined for scenes where there is an out-of-focus blur difference between the object of interest and the background. In such scenes, the proposed “defocus energy” can be utilized for automatic segmentation of the object boundary, and it can be combined with the histogram method to track the object more efficiently. Experiments demonstrate that the proposed methods are successful in difficult scenes with significant background clutter.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.image.2007.09.001</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0923-5965
ispartof Signal processing. Image communication, 2007-11, Vol.22 (10), p.891-905
issn 0923-5965
1879-2677
language eng
recordid cdi_proquest_miscellaneous_31040043
source Elsevier ScienceDirect Journals
subjects Active contours
Applied sciences
Curve evolution
Defocus
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Histogram matching
Image processing
Information, signal and communications theory
Object tracking
Pattern recognition
Selective focus
Signal and communications theory
Signal processing
Signal, noise
Telecommunications and information theory
title Video object segmentation and tracking using region-based statistics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A13%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Video%20object%20segmentation%20and%20tracking%20using%20region-based%20statistics&rft.jtitle=Signal%20processing.%20Image%20communication&rft.au=ERDEM,%20Cigdem%20Eroglu&rft.date=2007-11-01&rft.volume=22&rft.issue=10&rft.spage=891&rft.epage=905&rft.pages=891-905&rft.issn=0923-5965&rft.eissn=1879-2677&rft_id=info:doi/10.1016/j.image.2007.09.001&rft_dat=%3Cproquest_cross%3E31040043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31040043&rft_id=info:pmid/&rft_els_id=S0923596507001117&rfr_iscdi=true