Automatically Generating Related Queries in Japanese

Web searchers reformulate their queries, as they adapt to search engine behavior, learn more about a topic, or simply correct typing errors. Automatic query rewriting can help user web search, by augmenting a user's query, or replacing the query with one likely to retrieve better results. One e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Language Resources and Evaluation 2006-12, Vol.40 (3/4), p.219-232
Hauptverfasser: Jones, Rosie, Bartz, Kevin, Subasic, Pero, Rey, Benjamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 232
container_issue 3/4
container_start_page 219
container_title Language Resources and Evaluation
container_volume 40
creator Jones, Rosie
Bartz, Kevin
Subasic, Pero
Rey, Benjamin
description Web searchers reformulate their queries, as they adapt to search engine behavior, learn more about a topic, or simply correct typing errors. Automatic query rewriting can help user web search, by augmenting a user's query, or replacing the query with one likely to retrieve better results. One example of query-rewriting is spell-correction. We may also be interested in changing words to synonyms or other related terms. For Japanese, the opportunities for improving results are greater than for languages with a single character set, since documents may be written in multiple character sets, and a user may express the same meaning using different character sets. We give a description of the characteristics of Japanese search query logs and manual query reformulations carried out by Japanese web searchers. We use characteristics of Japanese query reformulations to extend previous work on automatic query rewriting in English, taking into account the Japanese writing system. We introduce several new features for building models resulting from this difference and discuss their impact on automatic query rewriting. We also examine enhancements in the form of rules which block conversion between some character sets, to address Japanese homophones. The precision/recall curves show significant improvement with the new feature set and blocking rules, and are often better than the English counterpart.
doi_str_mv 10.1007/s10579-007-9021-0
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_31037929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30208378</jstor_id><sourcerecordid>30208378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-8ecb0ffed16cca58dfc1c4240def9a3288cbedb0256ef240b1c5a537003d14d53</originalsourceid><addsrcrecordid>eNpdUMFOwzAMjRBIjMEHcECqOHAL2Em7pMdpggGahEAgcYvS1EWdunYk7WF_v4wiDpz8bL1nPz_GLhFuEUDdBYRM5TxCnoNADkdsgpkSXKcojn9wykHA5yk7C2ENkIpU6QlL50PfbWxfO9s0u2RJLfnYtV_JGzW2pzJ5HcjXFJK6TZ7t1rYU6JydVLYJdPFbp-zj4f598chXL8unxXzFnVCq55pcAVVFJc6cs5kuK4cu3oWSqtxKobUrqCxAZDOq4rhAl9lMKgBZYlpmcspuxr1b330PFHqzqYOjpokuuiEYiSBVLvJIvP5HXHeDb6M3IzD-qXJUkYQjyfkuBE-V2fp6Y_3OIJhDiGYM0RzgIUQDUXM1atah7_yfQMYktVRa7gEmH23y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214787917</pqid></control><display><type>article</type><title>Automatically Generating Related Queries in Japanese</title><source>Jstor Complete Legacy</source><source>Springer Nature - Complete Springer Journals</source><creator>Jones, Rosie ; Bartz, Kevin ; Subasic, Pero ; Rey, Benjamin</creator><creatorcontrib>Jones, Rosie ; Bartz, Kevin ; Subasic, Pero ; Rey, Benjamin</creatorcontrib><description>Web searchers reformulate their queries, as they adapt to search engine behavior, learn more about a topic, or simply correct typing errors. Automatic query rewriting can help user web search, by augmenting a user's query, or replacing the query with one likely to retrieve better results. One example of query-rewriting is spell-correction. We may also be interested in changing words to synonyms or other related terms. For Japanese, the opportunities for improving results are greater than for languages with a single character set, since documents may be written in multiple character sets, and a user may express the same meaning using different character sets. We give a description of the characteristics of Japanese search query logs and manual query reformulations carried out by Japanese web searchers. We use characteristics of Japanese query reformulations to extend previous work on automatic query rewriting in English, taking into account the Japanese writing system. We introduce several new features for building models resulting from this difference and discuss their impact on automatic query rewriting. We also examine enhancements in the form of rules which block conversion between some character sets, to address Japanese homophones. The precision/recall curves show significant improvement with the new feature set and blocking rules, and are often better than the English counterpart.</description><identifier>ISSN: 1574-020X</identifier><identifier>EISSN: 1572-8412</identifier><identifier>EISSN: 1574-0218</identifier><identifier>DOI: 10.1007/s10579-007-9021-0</identifier><identifier>CODEN: COHUAD</identifier><language>eng</language><publisher>Dordrect: Springer</publisher><subject>Blocking ; Canals ; Character sets ; Engine blocks ; English language ; Hiragana ; Homophones ; Japanese language ; Katakana ; Linguistics ; Machine learning ; Online searching ; Orthographies ; Queries ; Search engines ; Search logs ; Searches ; Synonyms ; Webs ; Word meaning ; World Wide Web ; Writing revision</subject><ispartof>Language Resources and Evaluation, 2006-12, Vol.40 (3/4), p.219-232</ispartof><rights>Copyright 2006 Springer Science+Business Media B.V.</rights><rights>Springer Science+Business Media B.V. 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c277t-8ecb0ffed16cca58dfc1c4240def9a3288cbedb0256ef240b1c5a537003d14d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30208378$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30208378$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27915,27916,58008,58241</link.rule.ids></links><search><creatorcontrib>Jones, Rosie</creatorcontrib><creatorcontrib>Bartz, Kevin</creatorcontrib><creatorcontrib>Subasic, Pero</creatorcontrib><creatorcontrib>Rey, Benjamin</creatorcontrib><title>Automatically Generating Related Queries in Japanese</title><title>Language Resources and Evaluation</title><description>Web searchers reformulate their queries, as they adapt to search engine behavior, learn more about a topic, or simply correct typing errors. Automatic query rewriting can help user web search, by augmenting a user's query, or replacing the query with one likely to retrieve better results. One example of query-rewriting is spell-correction. We may also be interested in changing words to synonyms or other related terms. For Japanese, the opportunities for improving results are greater than for languages with a single character set, since documents may be written in multiple character sets, and a user may express the same meaning using different character sets. We give a description of the characteristics of Japanese search query logs and manual query reformulations carried out by Japanese web searchers. We use characteristics of Japanese query reformulations to extend previous work on automatic query rewriting in English, taking into account the Japanese writing system. We introduce several new features for building models resulting from this difference and discuss their impact on automatic query rewriting. We also examine enhancements in the form of rules which block conversion between some character sets, to address Japanese homophones. The precision/recall curves show significant improvement with the new feature set and blocking rules, and are often better than the English counterpart.</description><subject>Blocking</subject><subject>Canals</subject><subject>Character sets</subject><subject>Engine blocks</subject><subject>English language</subject><subject>Hiragana</subject><subject>Homophones</subject><subject>Japanese language</subject><subject>Katakana</subject><subject>Linguistics</subject><subject>Machine learning</subject><subject>Online searching</subject><subject>Orthographies</subject><subject>Queries</subject><subject>Search engines</subject><subject>Search logs</subject><subject>Searches</subject><subject>Synonyms</subject><subject>Webs</subject><subject>Word meaning</subject><subject>World Wide Web</subject><subject>Writing revision</subject><issn>1574-020X</issn><issn>1572-8412</issn><issn>1574-0218</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AIMQZ</sourceid><sourceid>AVQMV</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>K50</sourceid><sourceid>M1D</sourceid><sourceid>M2O</sourceid><recordid>eNpdUMFOwzAMjRBIjMEHcECqOHAL2Em7pMdpggGahEAgcYvS1EWdunYk7WF_v4wiDpz8bL1nPz_GLhFuEUDdBYRM5TxCnoNADkdsgpkSXKcojn9wykHA5yk7C2ENkIpU6QlL50PfbWxfO9s0u2RJLfnYtV_JGzW2pzJ5HcjXFJK6TZ7t1rYU6JydVLYJdPFbp-zj4f598chXL8unxXzFnVCq55pcAVVFJc6cs5kuK4cu3oWSqtxKobUrqCxAZDOq4rhAl9lMKgBZYlpmcspuxr1b330PFHqzqYOjpokuuiEYiSBVLvJIvP5HXHeDb6M3IzD-qXJUkYQjyfkuBE-V2fp6Y_3OIJhDiGYM0RzgIUQDUXM1atah7_yfQMYktVRa7gEmH23y</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Jones, Rosie</creator><creator>Bartz, Kevin</creator><creator>Subasic, Pero</creator><creator>Rey, Benjamin</creator><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7T9</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AVQMV</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CPGLG</scope><scope>CRLPW</scope><scope>DWQXO</scope><scope>GB0</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K50</scope><scope>K7-</scope><scope>L7M</scope><scope>LIQON</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M1D</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20061201</creationdate><title>Automatically Generating Related Queries in Japanese</title><author>Jones, Rosie ; Bartz, Kevin ; Subasic, Pero ; Rey, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-8ecb0ffed16cca58dfc1c4240def9a3288cbedb0256ef240b1c5a537003d14d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Blocking</topic><topic>Canals</topic><topic>Character sets</topic><topic>Engine blocks</topic><topic>English language</topic><topic>Hiragana</topic><topic>Homophones</topic><topic>Japanese language</topic><topic>Katakana</topic><topic>Linguistics</topic><topic>Machine learning</topic><topic>Online searching</topic><topic>Orthographies</topic><topic>Queries</topic><topic>Search engines</topic><topic>Search logs</topic><topic>Searches</topic><topic>Synonyms</topic><topic>Webs</topic><topic>Word meaning</topic><topic>World Wide Web</topic><topic>Writing revision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, Rosie</creatorcontrib><creatorcontrib>Bartz, Kevin</creatorcontrib><creatorcontrib>Subasic, Pero</creatorcontrib><creatorcontrib>Rey, Benjamin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Arts Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Linguistics Collection</collection><collection>Linguistics Database</collection><collection>ProQuest Central Korea</collection><collection>DELNET Social Sciences &amp; Humanities Collection</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Art, Design &amp; Architecture Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest One Literature - U.S. Customers Only</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Arts &amp; Humanities Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Language Resources and Evaluation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Rosie</au><au>Bartz, Kevin</au><au>Subasic, Pero</au><au>Rey, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatically Generating Related Queries in Japanese</atitle><jtitle>Language Resources and Evaluation</jtitle><date>2006-12-01</date><risdate>2006</risdate><volume>40</volume><issue>3/4</issue><spage>219</spage><epage>232</epage><pages>219-232</pages><issn>1574-020X</issn><eissn>1572-8412</eissn><eissn>1574-0218</eissn><coden>COHUAD</coden><abstract>Web searchers reformulate their queries, as they adapt to search engine behavior, learn more about a topic, or simply correct typing errors. Automatic query rewriting can help user web search, by augmenting a user's query, or replacing the query with one likely to retrieve better results. One example of query-rewriting is spell-correction. We may also be interested in changing words to synonyms or other related terms. For Japanese, the opportunities for improving results are greater than for languages with a single character set, since documents may be written in multiple character sets, and a user may express the same meaning using different character sets. We give a description of the characteristics of Japanese search query logs and manual query reformulations carried out by Japanese web searchers. We use characteristics of Japanese query reformulations to extend previous work on automatic query rewriting in English, taking into account the Japanese writing system. We introduce several new features for building models resulting from this difference and discuss their impact on automatic query rewriting. We also examine enhancements in the form of rules which block conversion between some character sets, to address Japanese homophones. The precision/recall curves show significant improvement with the new feature set and blocking rules, and are often better than the English counterpart.</abstract><cop>Dordrect</cop><pub>Springer</pub><doi>10.1007/s10579-007-9021-0</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1574-020X
ispartof Language Resources and Evaluation, 2006-12, Vol.40 (3/4), p.219-232
issn 1574-020X
1572-8412
1574-0218
language eng
recordid cdi_proquest_miscellaneous_31037929
source Jstor Complete Legacy; Springer Nature - Complete Springer Journals
subjects Blocking
Canals
Character sets
Engine blocks
English language
Hiragana
Homophones
Japanese language
Katakana
Linguistics
Machine learning
Online searching
Orthographies
Queries
Search engines
Search logs
Searches
Synonyms
Webs
Word meaning
World Wide Web
Writing revision
title Automatically Generating Related Queries in Japanese
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A29%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatically%20Generating%20Related%20Queries%20in%20Japanese&rft.jtitle=Language%20Resources%20and%20Evaluation&rft.au=Jones,%20Rosie&rft.date=2006-12-01&rft.volume=40&rft.issue=3/4&rft.spage=219&rft.epage=232&rft.pages=219-232&rft.issn=1574-020X&rft.eissn=1572-8412&rft.coden=COHUAD&rft_id=info:doi/10.1007/s10579-007-9021-0&rft_dat=%3Cjstor_proqu%3E30208378%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214787917&rft_id=info:pmid/&rft_jstor_id=30208378&rfr_iscdi=true