Organoid culture promotes dedifferentiation of mouse myoblasts into stem cells capable of complete muscle regeneration

Experimental cell therapies for skeletal muscle conditions have shown little success, primarily because they use committed myogenic progenitors rather than true muscle stem cells, known as satellite cells. Here we present a method to generate in vitro-derived satellite cells (idSCs) from skeletal mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2024-09
Hauptverfasser: Price, Feodor D, Matyas, Mark N, Gehrke, Andrew R, Chen, William, Wolin, Erica A, Holton, Kristina M, Gibbs, Rebecca M, Lee, Alice, Singu, Pooja S, Sakakeeny, Jeffrey S, Poteracki, James M, Goune, Kelsey, Pfeiffer, Isabella T, Boswell, Sarah A, Sorger, Peter K, Srivastava, Mansi, Pfaff, Kathleen Lindahl, Gussoni, Emanuela, Buchanan, Sean M, Rubin, Lee L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Nature biotechnology
container_volume
creator Price, Feodor D
Matyas, Mark N
Gehrke, Andrew R
Chen, William
Wolin, Erica A
Holton, Kristina M
Gibbs, Rebecca M
Lee, Alice
Singu, Pooja S
Sakakeeny, Jeffrey S
Poteracki, James M
Goune, Kelsey
Pfeiffer, Isabella T
Boswell, Sarah A
Sorger, Peter K
Srivastava, Mansi
Pfaff, Kathleen Lindahl
Gussoni, Emanuela
Buchanan, Sean M
Rubin, Lee L
description Experimental cell therapies for skeletal muscle conditions have shown little success, primarily because they use committed myogenic progenitors rather than true muscle stem cells, known as satellite cells. Here we present a method to generate in vitro-derived satellite cells (idSCs) from skeletal muscle tissue. When transplanted in small numbers into mouse muscle, mouse idSCs fuse into myofibers, repopulate the satellite cell niche, self-renew, support multiple rounds of muscle regeneration and improve force production on par with freshly isolated satellite cells in damaged skeletal muscle. We compared the epigenomic and transcriptional signatures between idSCs, myoblasts and satellite cells and used these signatures to identify core signaling pathways and genes that confer idSC functionality. Finally, from human muscle biopsies, we successfully generated satellite cell-like cells in vitro. After further development, idSCs may provide a scalable source of cells for the treatment of genetic muscle disorders, trauma-induced muscle damage and age-related muscle weakness.
doi_str_mv 10.1038/s41587-024-02344-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3103449356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103449356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-13de839863bb5841f0ecb6cf7acdf38b267b81f9d9ec6400d8e18ce0023aa0a13</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEYmPwBzigHLkUkiZN0yOa-JIm7QLnKE2dqahtSpIi7d-TboODZct-_cp-ELql5IESJh8Dp4UsM5LzFIzzrDxDS1pwkVFRifNUk3lMC7FAVyF8EUIEF-ISLViVC1pUZIl-tn6nB9c22ExdnDzg0bveRQi4gaa1FjwMsdWxdQN2FvduCoD7vas7HWLA7RAdDhF6bKDrAjZ61HUHs9S4fuwgJvUUTGp52MEA_mB1jS6s7gLcnPIKfb48f6zfss329X39tMlMnsuYUdaAZJUUrK4LyaklYGphbKlNY5msc1HWktqqqcAITkgjgUoDJOHQmmjKVuj-6Ju--p4gRNW3Yb5UD5A-USyB5LxihUjS_Cg13oXgwarRt732e0WJmnmrI2-VeKsDb1WmpbuT_1T30Pyv_AFmv3OJfrk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103449356</pqid></control><display><type>article</type><title>Organoid culture promotes dedifferentiation of mouse myoblasts into stem cells capable of complete muscle regeneration</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Price, Feodor D ; Matyas, Mark N ; Gehrke, Andrew R ; Chen, William ; Wolin, Erica A ; Holton, Kristina M ; Gibbs, Rebecca M ; Lee, Alice ; Singu, Pooja S ; Sakakeeny, Jeffrey S ; Poteracki, James M ; Goune, Kelsey ; Pfeiffer, Isabella T ; Boswell, Sarah A ; Sorger, Peter K ; Srivastava, Mansi ; Pfaff, Kathleen Lindahl ; Gussoni, Emanuela ; Buchanan, Sean M ; Rubin, Lee L</creator><creatorcontrib>Price, Feodor D ; Matyas, Mark N ; Gehrke, Andrew R ; Chen, William ; Wolin, Erica A ; Holton, Kristina M ; Gibbs, Rebecca M ; Lee, Alice ; Singu, Pooja S ; Sakakeeny, Jeffrey S ; Poteracki, James M ; Goune, Kelsey ; Pfeiffer, Isabella T ; Boswell, Sarah A ; Sorger, Peter K ; Srivastava, Mansi ; Pfaff, Kathleen Lindahl ; Gussoni, Emanuela ; Buchanan, Sean M ; Rubin, Lee L</creatorcontrib><description>Experimental cell therapies for skeletal muscle conditions have shown little success, primarily because they use committed myogenic progenitors rather than true muscle stem cells, known as satellite cells. Here we present a method to generate in vitro-derived satellite cells (idSCs) from skeletal muscle tissue. When transplanted in small numbers into mouse muscle, mouse idSCs fuse into myofibers, repopulate the satellite cell niche, self-renew, support multiple rounds of muscle regeneration and improve force production on par with freshly isolated satellite cells in damaged skeletal muscle. We compared the epigenomic and transcriptional signatures between idSCs, myoblasts and satellite cells and used these signatures to identify core signaling pathways and genes that confer idSC functionality. Finally, from human muscle biopsies, we successfully generated satellite cell-like cells in vitro. After further development, idSCs may provide a scalable source of cells for the treatment of genetic muscle disorders, trauma-induced muscle damage and age-related muscle weakness.</description><identifier>ISSN: 1087-0156</identifier><identifier>ISSN: 1546-1696</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-024-02344-7</identifier><identifier>PMID: 39261590</identifier><language>eng</language><publisher>United States</publisher><ispartof>Nature biotechnology, 2024-09</ispartof><rights>2024. The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-13de839863bb5841f0ecb6cf7acdf38b267b81f9d9ec6400d8e18ce0023aa0a13</cites><orcidid>0000-0002-3118-3378 ; 0000-0002-9915-3677 ; 0000-0001-6374-8807 ; 0000-0002-3364-1838 ; 0009-0005-2512-8400 ; 0000-0001-6773-5675 ; 0009-0001-8835-4123 ; 0000-0001-8144-0662 ; 0000-0002-8658-841X ; 0000-0001-5075-7915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39261590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Price, Feodor D</creatorcontrib><creatorcontrib>Matyas, Mark N</creatorcontrib><creatorcontrib>Gehrke, Andrew R</creatorcontrib><creatorcontrib>Chen, William</creatorcontrib><creatorcontrib>Wolin, Erica A</creatorcontrib><creatorcontrib>Holton, Kristina M</creatorcontrib><creatorcontrib>Gibbs, Rebecca M</creatorcontrib><creatorcontrib>Lee, Alice</creatorcontrib><creatorcontrib>Singu, Pooja S</creatorcontrib><creatorcontrib>Sakakeeny, Jeffrey S</creatorcontrib><creatorcontrib>Poteracki, James M</creatorcontrib><creatorcontrib>Goune, Kelsey</creatorcontrib><creatorcontrib>Pfeiffer, Isabella T</creatorcontrib><creatorcontrib>Boswell, Sarah A</creatorcontrib><creatorcontrib>Sorger, Peter K</creatorcontrib><creatorcontrib>Srivastava, Mansi</creatorcontrib><creatorcontrib>Pfaff, Kathleen Lindahl</creatorcontrib><creatorcontrib>Gussoni, Emanuela</creatorcontrib><creatorcontrib>Buchanan, Sean M</creatorcontrib><creatorcontrib>Rubin, Lee L</creatorcontrib><title>Organoid culture promotes dedifferentiation of mouse myoblasts into stem cells capable of complete muscle regeneration</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><description>Experimental cell therapies for skeletal muscle conditions have shown little success, primarily because they use committed myogenic progenitors rather than true muscle stem cells, known as satellite cells. Here we present a method to generate in vitro-derived satellite cells (idSCs) from skeletal muscle tissue. When transplanted in small numbers into mouse muscle, mouse idSCs fuse into myofibers, repopulate the satellite cell niche, self-renew, support multiple rounds of muscle regeneration and improve force production on par with freshly isolated satellite cells in damaged skeletal muscle. We compared the epigenomic and transcriptional signatures between idSCs, myoblasts and satellite cells and used these signatures to identify core signaling pathways and genes that confer idSC functionality. Finally, from human muscle biopsies, we successfully generated satellite cell-like cells in vitro. After further development, idSCs may provide a scalable source of cells for the treatment of genetic muscle disorders, trauma-induced muscle damage and age-related muscle weakness.</description><issn>1087-0156</issn><issn>1546-1696</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwzAMhiMEYmPwBzigHLkUkiZN0yOa-JIm7QLnKE2dqahtSpIi7d-TboODZct-_cp-ELql5IESJh8Dp4UsM5LzFIzzrDxDS1pwkVFRifNUk3lMC7FAVyF8EUIEF-ISLViVC1pUZIl-tn6nB9c22ExdnDzg0bveRQi4gaa1FjwMsdWxdQN2FvduCoD7vas7HWLA7RAdDhF6bKDrAjZ61HUHs9S4fuwgJvUUTGp52MEA_mB1jS6s7gLcnPIKfb48f6zfss329X39tMlMnsuYUdaAZJUUrK4LyaklYGphbKlNY5msc1HWktqqqcAITkgjgUoDJOHQmmjKVuj-6Ju--p4gRNW3Yb5UD5A-USyB5LxihUjS_Cg13oXgwarRt732e0WJmnmrI2-VeKsDb1WmpbuT_1T30Pyv_AFmv3OJfrk</recordid><startdate>20240911</startdate><enddate>20240911</enddate><creator>Price, Feodor D</creator><creator>Matyas, Mark N</creator><creator>Gehrke, Andrew R</creator><creator>Chen, William</creator><creator>Wolin, Erica A</creator><creator>Holton, Kristina M</creator><creator>Gibbs, Rebecca M</creator><creator>Lee, Alice</creator><creator>Singu, Pooja S</creator><creator>Sakakeeny, Jeffrey S</creator><creator>Poteracki, James M</creator><creator>Goune, Kelsey</creator><creator>Pfeiffer, Isabella T</creator><creator>Boswell, Sarah A</creator><creator>Sorger, Peter K</creator><creator>Srivastava, Mansi</creator><creator>Pfaff, Kathleen Lindahl</creator><creator>Gussoni, Emanuela</creator><creator>Buchanan, Sean M</creator><creator>Rubin, Lee L</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3118-3378</orcidid><orcidid>https://orcid.org/0000-0002-9915-3677</orcidid><orcidid>https://orcid.org/0000-0001-6374-8807</orcidid><orcidid>https://orcid.org/0000-0002-3364-1838</orcidid><orcidid>https://orcid.org/0009-0005-2512-8400</orcidid><orcidid>https://orcid.org/0000-0001-6773-5675</orcidid><orcidid>https://orcid.org/0009-0001-8835-4123</orcidid><orcidid>https://orcid.org/0000-0001-8144-0662</orcidid><orcidid>https://orcid.org/0000-0002-8658-841X</orcidid><orcidid>https://orcid.org/0000-0001-5075-7915</orcidid></search><sort><creationdate>20240911</creationdate><title>Organoid culture promotes dedifferentiation of mouse myoblasts into stem cells capable of complete muscle regeneration</title><author>Price, Feodor D ; Matyas, Mark N ; Gehrke, Andrew R ; Chen, William ; Wolin, Erica A ; Holton, Kristina M ; Gibbs, Rebecca M ; Lee, Alice ; Singu, Pooja S ; Sakakeeny, Jeffrey S ; Poteracki, James M ; Goune, Kelsey ; Pfeiffer, Isabella T ; Boswell, Sarah A ; Sorger, Peter K ; Srivastava, Mansi ; Pfaff, Kathleen Lindahl ; Gussoni, Emanuela ; Buchanan, Sean M ; Rubin, Lee L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-13de839863bb5841f0ecb6cf7acdf38b267b81f9d9ec6400d8e18ce0023aa0a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Price, Feodor D</creatorcontrib><creatorcontrib>Matyas, Mark N</creatorcontrib><creatorcontrib>Gehrke, Andrew R</creatorcontrib><creatorcontrib>Chen, William</creatorcontrib><creatorcontrib>Wolin, Erica A</creatorcontrib><creatorcontrib>Holton, Kristina M</creatorcontrib><creatorcontrib>Gibbs, Rebecca M</creatorcontrib><creatorcontrib>Lee, Alice</creatorcontrib><creatorcontrib>Singu, Pooja S</creatorcontrib><creatorcontrib>Sakakeeny, Jeffrey S</creatorcontrib><creatorcontrib>Poteracki, James M</creatorcontrib><creatorcontrib>Goune, Kelsey</creatorcontrib><creatorcontrib>Pfeiffer, Isabella T</creatorcontrib><creatorcontrib>Boswell, Sarah A</creatorcontrib><creatorcontrib>Sorger, Peter K</creatorcontrib><creatorcontrib>Srivastava, Mansi</creatorcontrib><creatorcontrib>Pfaff, Kathleen Lindahl</creatorcontrib><creatorcontrib>Gussoni, Emanuela</creatorcontrib><creatorcontrib>Buchanan, Sean M</creatorcontrib><creatorcontrib>Rubin, Lee L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Price, Feodor D</au><au>Matyas, Mark N</au><au>Gehrke, Andrew R</au><au>Chen, William</au><au>Wolin, Erica A</au><au>Holton, Kristina M</au><au>Gibbs, Rebecca M</au><au>Lee, Alice</au><au>Singu, Pooja S</au><au>Sakakeeny, Jeffrey S</au><au>Poteracki, James M</au><au>Goune, Kelsey</au><au>Pfeiffer, Isabella T</au><au>Boswell, Sarah A</au><au>Sorger, Peter K</au><au>Srivastava, Mansi</au><au>Pfaff, Kathleen Lindahl</au><au>Gussoni, Emanuela</au><au>Buchanan, Sean M</au><au>Rubin, Lee L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organoid culture promotes dedifferentiation of mouse myoblasts into stem cells capable of complete muscle regeneration</atitle><jtitle>Nature biotechnology</jtitle><addtitle>Nat Biotechnol</addtitle><date>2024-09-11</date><risdate>2024</risdate><issn>1087-0156</issn><issn>1546-1696</issn><eissn>1546-1696</eissn><abstract>Experimental cell therapies for skeletal muscle conditions have shown little success, primarily because they use committed myogenic progenitors rather than true muscle stem cells, known as satellite cells. Here we present a method to generate in vitro-derived satellite cells (idSCs) from skeletal muscle tissue. When transplanted in small numbers into mouse muscle, mouse idSCs fuse into myofibers, repopulate the satellite cell niche, self-renew, support multiple rounds of muscle regeneration and improve force production on par with freshly isolated satellite cells in damaged skeletal muscle. We compared the epigenomic and transcriptional signatures between idSCs, myoblasts and satellite cells and used these signatures to identify core signaling pathways and genes that confer idSC functionality. Finally, from human muscle biopsies, we successfully generated satellite cell-like cells in vitro. After further development, idSCs may provide a scalable source of cells for the treatment of genetic muscle disorders, trauma-induced muscle damage and age-related muscle weakness.</abstract><cop>United States</cop><pmid>39261590</pmid><doi>10.1038/s41587-024-02344-7</doi><orcidid>https://orcid.org/0000-0002-3118-3378</orcidid><orcidid>https://orcid.org/0000-0002-9915-3677</orcidid><orcidid>https://orcid.org/0000-0001-6374-8807</orcidid><orcidid>https://orcid.org/0000-0002-3364-1838</orcidid><orcidid>https://orcid.org/0009-0005-2512-8400</orcidid><orcidid>https://orcid.org/0000-0001-6773-5675</orcidid><orcidid>https://orcid.org/0009-0001-8835-4123</orcidid><orcidid>https://orcid.org/0000-0001-8144-0662</orcidid><orcidid>https://orcid.org/0000-0002-8658-841X</orcidid><orcidid>https://orcid.org/0000-0001-5075-7915</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nature biotechnology, 2024-09
issn 1087-0156
1546-1696
1546-1696
language eng
recordid cdi_proquest_miscellaneous_3103449356
source Nature; SpringerLink Journals - AutoHoldings
title Organoid culture promotes dedifferentiation of mouse myoblasts into stem cells capable of complete muscle regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A47%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organoid%20culture%20promotes%20dedifferentiation%20of%20mouse%20myoblasts%20into%20stem%20cells%20capable%20of%20complete%20muscle%20regeneration&rft.jtitle=Nature%20biotechnology&rft.au=Price,%20Feodor%20D&rft.date=2024-09-11&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-024-02344-7&rft_dat=%3Cproquest_cross%3E3103449356%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103449356&rft_id=info:pmid/39261590&rfr_iscdi=true