Organoid culture promotes dedifferentiation of mouse myoblasts into stem cells capable of complete muscle regeneration
Experimental cell therapies for skeletal muscle conditions have shown little success, primarily because they use committed myogenic progenitors rather than true muscle stem cells, known as satellite cells. Here we present a method to generate in vitro-derived satellite cells (idSCs) from skeletal mu...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2024-09 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Nature biotechnology |
container_volume | |
creator | Price, Feodor D Matyas, Mark N Gehrke, Andrew R Chen, William Wolin, Erica A Holton, Kristina M Gibbs, Rebecca M Lee, Alice Singu, Pooja S Sakakeeny, Jeffrey S Poteracki, James M Goune, Kelsey Pfeiffer, Isabella T Boswell, Sarah A Sorger, Peter K Srivastava, Mansi Pfaff, Kathleen Lindahl Gussoni, Emanuela Buchanan, Sean M Rubin, Lee L |
description | Experimental cell therapies for skeletal muscle conditions have shown little success, primarily because they use committed myogenic progenitors rather than true muscle stem cells, known as satellite cells. Here we present a method to generate in vitro-derived satellite cells (idSCs) from skeletal muscle tissue. When transplanted in small numbers into mouse muscle, mouse idSCs fuse into myofibers, repopulate the satellite cell niche, self-renew, support multiple rounds of muscle regeneration and improve force production on par with freshly isolated satellite cells in damaged skeletal muscle. We compared the epigenomic and transcriptional signatures between idSCs, myoblasts and satellite cells and used these signatures to identify core signaling pathways and genes that confer idSC functionality. Finally, from human muscle biopsies, we successfully generated satellite cell-like cells in vitro. After further development, idSCs may provide a scalable source of cells for the treatment of genetic muscle disorders, trauma-induced muscle damage and age-related muscle weakness. |
doi_str_mv | 10.1038/s41587-024-02344-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3103449356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103449356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-13de839863bb5841f0ecb6cf7acdf38b267b81f9d9ec6400d8e18ce0023aa0a13</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEYmPwBzigHLkUkiZN0yOa-JIm7QLnKE2dqahtSpIi7d-TboODZct-_cp-ELql5IESJh8Dp4UsM5LzFIzzrDxDS1pwkVFRifNUk3lMC7FAVyF8EUIEF-ISLViVC1pUZIl-tn6nB9c22ExdnDzg0bveRQi4gaa1FjwMsdWxdQN2FvduCoD7vas7HWLA7RAdDhF6bKDrAjZ61HUHs9S4fuwgJvUUTGp52MEA_mB1jS6s7gLcnPIKfb48f6zfss329X39tMlMnsuYUdaAZJUUrK4LyaklYGphbKlNY5msc1HWktqqqcAITkgjgUoDJOHQmmjKVuj-6Ju--p4gRNW3Yb5UD5A-USyB5LxihUjS_Cg13oXgwarRt732e0WJmnmrI2-VeKsDb1WmpbuT_1T30Pyv_AFmv3OJfrk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103449356</pqid></control><display><type>article</type><title>Organoid culture promotes dedifferentiation of mouse myoblasts into stem cells capable of complete muscle regeneration</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Price, Feodor D ; Matyas, Mark N ; Gehrke, Andrew R ; Chen, William ; Wolin, Erica A ; Holton, Kristina M ; Gibbs, Rebecca M ; Lee, Alice ; Singu, Pooja S ; Sakakeeny, Jeffrey S ; Poteracki, James M ; Goune, Kelsey ; Pfeiffer, Isabella T ; Boswell, Sarah A ; Sorger, Peter K ; Srivastava, Mansi ; Pfaff, Kathleen Lindahl ; Gussoni, Emanuela ; Buchanan, Sean M ; Rubin, Lee L</creator><creatorcontrib>Price, Feodor D ; Matyas, Mark N ; Gehrke, Andrew R ; Chen, William ; Wolin, Erica A ; Holton, Kristina M ; Gibbs, Rebecca M ; Lee, Alice ; Singu, Pooja S ; Sakakeeny, Jeffrey S ; Poteracki, James M ; Goune, Kelsey ; Pfeiffer, Isabella T ; Boswell, Sarah A ; Sorger, Peter K ; Srivastava, Mansi ; Pfaff, Kathleen Lindahl ; Gussoni, Emanuela ; Buchanan, Sean M ; Rubin, Lee L</creatorcontrib><description>Experimental cell therapies for skeletal muscle conditions have shown little success, primarily because they use committed myogenic progenitors rather than true muscle stem cells, known as satellite cells. Here we present a method to generate in vitro-derived satellite cells (idSCs) from skeletal muscle tissue. When transplanted in small numbers into mouse muscle, mouse idSCs fuse into myofibers, repopulate the satellite cell niche, self-renew, support multiple rounds of muscle regeneration and improve force production on par with freshly isolated satellite cells in damaged skeletal muscle. We compared the epigenomic and transcriptional signatures between idSCs, myoblasts and satellite cells and used these signatures to identify core signaling pathways and genes that confer idSC functionality. Finally, from human muscle biopsies, we successfully generated satellite cell-like cells in vitro. After further development, idSCs may provide a scalable source of cells for the treatment of genetic muscle disorders, trauma-induced muscle damage and age-related muscle weakness.</description><identifier>ISSN: 1087-0156</identifier><identifier>ISSN: 1546-1696</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-024-02344-7</identifier><identifier>PMID: 39261590</identifier><language>eng</language><publisher>United States</publisher><ispartof>Nature biotechnology, 2024-09</ispartof><rights>2024. The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-13de839863bb5841f0ecb6cf7acdf38b267b81f9d9ec6400d8e18ce0023aa0a13</cites><orcidid>0000-0002-3118-3378 ; 0000-0002-9915-3677 ; 0000-0001-6374-8807 ; 0000-0002-3364-1838 ; 0009-0005-2512-8400 ; 0000-0001-6773-5675 ; 0009-0001-8835-4123 ; 0000-0001-8144-0662 ; 0000-0002-8658-841X ; 0000-0001-5075-7915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39261590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Price, Feodor D</creatorcontrib><creatorcontrib>Matyas, Mark N</creatorcontrib><creatorcontrib>Gehrke, Andrew R</creatorcontrib><creatorcontrib>Chen, William</creatorcontrib><creatorcontrib>Wolin, Erica A</creatorcontrib><creatorcontrib>Holton, Kristina M</creatorcontrib><creatorcontrib>Gibbs, Rebecca M</creatorcontrib><creatorcontrib>Lee, Alice</creatorcontrib><creatorcontrib>Singu, Pooja S</creatorcontrib><creatorcontrib>Sakakeeny, Jeffrey S</creatorcontrib><creatorcontrib>Poteracki, James M</creatorcontrib><creatorcontrib>Goune, Kelsey</creatorcontrib><creatorcontrib>Pfeiffer, Isabella T</creatorcontrib><creatorcontrib>Boswell, Sarah A</creatorcontrib><creatorcontrib>Sorger, Peter K</creatorcontrib><creatorcontrib>Srivastava, Mansi</creatorcontrib><creatorcontrib>Pfaff, Kathleen Lindahl</creatorcontrib><creatorcontrib>Gussoni, Emanuela</creatorcontrib><creatorcontrib>Buchanan, Sean M</creatorcontrib><creatorcontrib>Rubin, Lee L</creatorcontrib><title>Organoid culture promotes dedifferentiation of mouse myoblasts into stem cells capable of complete muscle regeneration</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><description>Experimental cell therapies for skeletal muscle conditions have shown little success, primarily because they use committed myogenic progenitors rather than true muscle stem cells, known as satellite cells. Here we present a method to generate in vitro-derived satellite cells (idSCs) from skeletal muscle tissue. When transplanted in small numbers into mouse muscle, mouse idSCs fuse into myofibers, repopulate the satellite cell niche, self-renew, support multiple rounds of muscle regeneration and improve force production on par with freshly isolated satellite cells in damaged skeletal muscle. We compared the epigenomic and transcriptional signatures between idSCs, myoblasts and satellite cells and used these signatures to identify core signaling pathways and genes that confer idSC functionality. Finally, from human muscle biopsies, we successfully generated satellite cell-like cells in vitro. After further development, idSCs may provide a scalable source of cells for the treatment of genetic muscle disorders, trauma-induced muscle damage and age-related muscle weakness.</description><issn>1087-0156</issn><issn>1546-1696</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwzAMhiMEYmPwBzigHLkUkiZN0yOa-JIm7QLnKE2dqahtSpIi7d-TboODZct-_cp-ELql5IESJh8Dp4UsM5LzFIzzrDxDS1pwkVFRifNUk3lMC7FAVyF8EUIEF-ISLViVC1pUZIl-tn6nB9c22ExdnDzg0bveRQi4gaa1FjwMsdWxdQN2FvduCoD7vas7HWLA7RAdDhF6bKDrAjZ61HUHs9S4fuwgJvUUTGp52MEA_mB1jS6s7gLcnPIKfb48f6zfss329X39tMlMnsuYUdaAZJUUrK4LyaklYGphbKlNY5msc1HWktqqqcAITkgjgUoDJOHQmmjKVuj-6Ju--p4gRNW3Yb5UD5A-USyB5LxihUjS_Cg13oXgwarRt732e0WJmnmrI2-VeKsDb1WmpbuT_1T30Pyv_AFmv3OJfrk</recordid><startdate>20240911</startdate><enddate>20240911</enddate><creator>Price, Feodor D</creator><creator>Matyas, Mark N</creator><creator>Gehrke, Andrew R</creator><creator>Chen, William</creator><creator>Wolin, Erica A</creator><creator>Holton, Kristina M</creator><creator>Gibbs, Rebecca M</creator><creator>Lee, Alice</creator><creator>Singu, Pooja S</creator><creator>Sakakeeny, Jeffrey S</creator><creator>Poteracki, James M</creator><creator>Goune, Kelsey</creator><creator>Pfeiffer, Isabella T</creator><creator>Boswell, Sarah A</creator><creator>Sorger, Peter K</creator><creator>Srivastava, Mansi</creator><creator>Pfaff, Kathleen Lindahl</creator><creator>Gussoni, Emanuela</creator><creator>Buchanan, Sean M</creator><creator>Rubin, Lee L</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3118-3378</orcidid><orcidid>https://orcid.org/0000-0002-9915-3677</orcidid><orcidid>https://orcid.org/0000-0001-6374-8807</orcidid><orcidid>https://orcid.org/0000-0002-3364-1838</orcidid><orcidid>https://orcid.org/0009-0005-2512-8400</orcidid><orcidid>https://orcid.org/0000-0001-6773-5675</orcidid><orcidid>https://orcid.org/0009-0001-8835-4123</orcidid><orcidid>https://orcid.org/0000-0001-8144-0662</orcidid><orcidid>https://orcid.org/0000-0002-8658-841X</orcidid><orcidid>https://orcid.org/0000-0001-5075-7915</orcidid></search><sort><creationdate>20240911</creationdate><title>Organoid culture promotes dedifferentiation of mouse myoblasts into stem cells capable of complete muscle regeneration</title><author>Price, Feodor D ; Matyas, Mark N ; Gehrke, Andrew R ; Chen, William ; Wolin, Erica A ; Holton, Kristina M ; Gibbs, Rebecca M ; Lee, Alice ; Singu, Pooja S ; Sakakeeny, Jeffrey S ; Poteracki, James M ; Goune, Kelsey ; Pfeiffer, Isabella T ; Boswell, Sarah A ; Sorger, Peter K ; Srivastava, Mansi ; Pfaff, Kathleen Lindahl ; Gussoni, Emanuela ; Buchanan, Sean M ; Rubin, Lee L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-13de839863bb5841f0ecb6cf7acdf38b267b81f9d9ec6400d8e18ce0023aa0a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Price, Feodor D</creatorcontrib><creatorcontrib>Matyas, Mark N</creatorcontrib><creatorcontrib>Gehrke, Andrew R</creatorcontrib><creatorcontrib>Chen, William</creatorcontrib><creatorcontrib>Wolin, Erica A</creatorcontrib><creatorcontrib>Holton, Kristina M</creatorcontrib><creatorcontrib>Gibbs, Rebecca M</creatorcontrib><creatorcontrib>Lee, Alice</creatorcontrib><creatorcontrib>Singu, Pooja S</creatorcontrib><creatorcontrib>Sakakeeny, Jeffrey S</creatorcontrib><creatorcontrib>Poteracki, James M</creatorcontrib><creatorcontrib>Goune, Kelsey</creatorcontrib><creatorcontrib>Pfeiffer, Isabella T</creatorcontrib><creatorcontrib>Boswell, Sarah A</creatorcontrib><creatorcontrib>Sorger, Peter K</creatorcontrib><creatorcontrib>Srivastava, Mansi</creatorcontrib><creatorcontrib>Pfaff, Kathleen Lindahl</creatorcontrib><creatorcontrib>Gussoni, Emanuela</creatorcontrib><creatorcontrib>Buchanan, Sean M</creatorcontrib><creatorcontrib>Rubin, Lee L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Price, Feodor D</au><au>Matyas, Mark N</au><au>Gehrke, Andrew R</au><au>Chen, William</au><au>Wolin, Erica A</au><au>Holton, Kristina M</au><au>Gibbs, Rebecca M</au><au>Lee, Alice</au><au>Singu, Pooja S</au><au>Sakakeeny, Jeffrey S</au><au>Poteracki, James M</au><au>Goune, Kelsey</au><au>Pfeiffer, Isabella T</au><au>Boswell, Sarah A</au><au>Sorger, Peter K</au><au>Srivastava, Mansi</au><au>Pfaff, Kathleen Lindahl</au><au>Gussoni, Emanuela</au><au>Buchanan, Sean M</au><au>Rubin, Lee L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organoid culture promotes dedifferentiation of mouse myoblasts into stem cells capable of complete muscle regeneration</atitle><jtitle>Nature biotechnology</jtitle><addtitle>Nat Biotechnol</addtitle><date>2024-09-11</date><risdate>2024</risdate><issn>1087-0156</issn><issn>1546-1696</issn><eissn>1546-1696</eissn><abstract>Experimental cell therapies for skeletal muscle conditions have shown little success, primarily because they use committed myogenic progenitors rather than true muscle stem cells, known as satellite cells. Here we present a method to generate in vitro-derived satellite cells (idSCs) from skeletal muscle tissue. When transplanted in small numbers into mouse muscle, mouse idSCs fuse into myofibers, repopulate the satellite cell niche, self-renew, support multiple rounds of muscle regeneration and improve force production on par with freshly isolated satellite cells in damaged skeletal muscle. We compared the epigenomic and transcriptional signatures between idSCs, myoblasts and satellite cells and used these signatures to identify core signaling pathways and genes that confer idSC functionality. Finally, from human muscle biopsies, we successfully generated satellite cell-like cells in vitro. After further development, idSCs may provide a scalable source of cells for the treatment of genetic muscle disorders, trauma-induced muscle damage and age-related muscle weakness.</abstract><cop>United States</cop><pmid>39261590</pmid><doi>10.1038/s41587-024-02344-7</doi><orcidid>https://orcid.org/0000-0002-3118-3378</orcidid><orcidid>https://orcid.org/0000-0002-9915-3677</orcidid><orcidid>https://orcid.org/0000-0001-6374-8807</orcidid><orcidid>https://orcid.org/0000-0002-3364-1838</orcidid><orcidid>https://orcid.org/0009-0005-2512-8400</orcidid><orcidid>https://orcid.org/0000-0001-6773-5675</orcidid><orcidid>https://orcid.org/0009-0001-8835-4123</orcidid><orcidid>https://orcid.org/0000-0001-8144-0662</orcidid><orcidid>https://orcid.org/0000-0002-8658-841X</orcidid><orcidid>https://orcid.org/0000-0001-5075-7915</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | Nature biotechnology, 2024-09 |
issn | 1087-0156 1546-1696 1546-1696 |
language | eng |
recordid | cdi_proquest_miscellaneous_3103449356 |
source | Nature; SpringerLink Journals - AutoHoldings |
title | Organoid culture promotes dedifferentiation of mouse myoblasts into stem cells capable of complete muscle regeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A47%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organoid%20culture%20promotes%20dedifferentiation%20of%20mouse%20myoblasts%20into%20stem%20cells%20capable%20of%20complete%20muscle%20regeneration&rft.jtitle=Nature%20biotechnology&rft.au=Price,%20Feodor%20D&rft.date=2024-09-11&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-024-02344-7&rft_dat=%3Cproquest_cross%3E3103449356%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103449356&rft_id=info:pmid/39261590&rfr_iscdi=true |