Modeling of Dissolving Microneedle-Based Transdermal Drug Delivery: Effects of Dynamics of Polymers in Solution

Dissolving microneedle (DMN)-assisted transdermal drug delivery (TDD) has received attention from the scientific community in recent years due to its ability to control the rate of drug delivery through its design, the choice of polymers, and its composition. The dissolution of the polymer depends s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular pharmaceutics 2024-10, Vol.21 (10), p.5104-5114
Hauptverfasser: Yadav, Prateek R., Hingonia, Pratinav, Das, Diganta B., Pattanayek, Sudip K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5114
container_issue 10
container_start_page 5104
container_title Molecular pharmaceutics
container_volume 21
creator Yadav, Prateek R.
Hingonia, Pratinav
Das, Diganta B.
Pattanayek, Sudip K.
description Dissolving microneedle (DMN)-assisted transdermal drug delivery (TDD) has received attention from the scientific community in recent years due to its ability to control the rate of drug delivery through its design, the choice of polymers, and its composition. The dissolution of the polymer depends strongly on the polymer–solvent interaction and polymer physics. Here, we developed a mathematical model based on the physicochemical parameters of DMNs and polymer physics to determine the drug release profiles. An annular gap width is defined when the MN is inserted in the skin, accumulating interstitial fluid (ISF) from the surrounding skin and acting as a boundary layer between the skin and the MN. Poly­(vinylpyrrolidone) (PVP) is used as a model dissolving polymer, and ceftriaxone is used as a representative drug. The model agrees well with the literature data for ex vivo permeation studies, along with the percent height reduction of the MN. Based on the suggested mathematical model, when loading 0.39 mg of ceftriaxone, the prediction indicates that approximately 93% of the drug will be cleared from the bloodstream within 24 h. The proposed modeling strategy can be utilized to optimize drug transport behavior using DMNs.
doi_str_mv 10.1021/acs.molpharmaceut.4c00492
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3103445395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103445395</sourcerecordid><originalsourceid>FETCH-LOGICAL-a237t-4d8646a8131d2d23b9cf4e5ebfcaba22832c62f84b51290ab4085a7aaa69b8b83</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0Eorx-AYUdmxQ_W4cdtOUhgUAC1tHEmZQgJy52Uql_j0sLEjtWM6O5947mEHLG6JBRzi7AhGHj7OIdfAMG-24oDaUy4zvkgCkpUi0yvvvbazkghyF8UMql4mKfDOJaZeMxPyDu0ZVo63aeuCqZ1iE4u1xPj7XxrkUsLabXELBMXj20ocR40SZT38-TafQt0a8uk1lVoenCd8SqhaY23_2zs6sGfUjqNnlxtu9q1x6TvQpswJNtPSJvN7PXyV368HR7P7l6SIGLcZfKUo_kCDQTrOQlF0VmKokKi8pAAZxrwc2IV1oWivGMQiGpVjAGgFFW6EKLI3K-yV1499lj6PKmDgathRZdH3LBqJBSiUxFabaRxo9D8FjlC1834Fc5o_madx55539451ve0Xu6PdMXDZa_zh_AUaA2gnXGh-t9G7_-R_AX5iKV3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103445395</pqid></control><display><type>article</type><title>Modeling of Dissolving Microneedle-Based Transdermal Drug Delivery: Effects of Dynamics of Polymers in Solution</title><source>American Chemical Society</source><source>MEDLINE</source><creator>Yadav, Prateek R. ; Hingonia, Pratinav ; Das, Diganta B. ; Pattanayek, Sudip K.</creator><creatorcontrib>Yadav, Prateek R. ; Hingonia, Pratinav ; Das, Diganta B. ; Pattanayek, Sudip K.</creatorcontrib><description>Dissolving microneedle (DMN)-assisted transdermal drug delivery (TDD) has received attention from the scientific community in recent years due to its ability to control the rate of drug delivery through its design, the choice of polymers, and its composition. The dissolution of the polymer depends strongly on the polymer–solvent interaction and polymer physics. Here, we developed a mathematical model based on the physicochemical parameters of DMNs and polymer physics to determine the drug release profiles. An annular gap width is defined when the MN is inserted in the skin, accumulating interstitial fluid (ISF) from the surrounding skin and acting as a boundary layer between the skin and the MN. Poly­(vinylpyrrolidone) (PVP) is used as a model dissolving polymer, and ceftriaxone is used as a representative drug. The model agrees well with the literature data for ex vivo permeation studies, along with the percent height reduction of the MN. Based on the suggested mathematical model, when loading 0.39 mg of ceftriaxone, the prediction indicates that approximately 93% of the drug will be cleared from the bloodstream within 24 h. The proposed modeling strategy can be utilized to optimize drug transport behavior using DMNs.</description><identifier>ISSN: 1543-8384</identifier><identifier>ISSN: 1543-8392</identifier><identifier>EISSN: 1543-8392</identifier><identifier>DOI: 10.1021/acs.molpharmaceut.4c00492</identifier><identifier>PMID: 39259772</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Administration, Cutaneous ; Animals ; Ceftriaxone - administration &amp; dosage ; Ceftriaxone - pharmacokinetics ; Drug Delivery Systems - methods ; Drug Liberation ; Models, Theoretical ; Needles ; Polymers - chemistry ; Povidone - chemistry ; Skin - metabolism ; Skin Absorption - drug effects ; Solubility</subject><ispartof>Molecular pharmaceutics, 2024-10, Vol.21 (10), p.5104-5114</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a237t-4d8646a8131d2d23b9cf4e5ebfcaba22832c62f84b51290ab4085a7aaa69b8b83</cites><orcidid>0000-0001-9827-7232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.molpharmaceut.4c00492$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.molpharmaceut.4c00492$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39259772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yadav, Prateek R.</creatorcontrib><creatorcontrib>Hingonia, Pratinav</creatorcontrib><creatorcontrib>Das, Diganta B.</creatorcontrib><creatorcontrib>Pattanayek, Sudip K.</creatorcontrib><title>Modeling of Dissolving Microneedle-Based Transdermal Drug Delivery: Effects of Dynamics of Polymers in Solution</title><title>Molecular pharmaceutics</title><addtitle>Mol. Pharmaceutics</addtitle><description>Dissolving microneedle (DMN)-assisted transdermal drug delivery (TDD) has received attention from the scientific community in recent years due to its ability to control the rate of drug delivery through its design, the choice of polymers, and its composition. The dissolution of the polymer depends strongly on the polymer–solvent interaction and polymer physics. Here, we developed a mathematical model based on the physicochemical parameters of DMNs and polymer physics to determine the drug release profiles. An annular gap width is defined when the MN is inserted in the skin, accumulating interstitial fluid (ISF) from the surrounding skin and acting as a boundary layer between the skin and the MN. Poly­(vinylpyrrolidone) (PVP) is used as a model dissolving polymer, and ceftriaxone is used as a representative drug. The model agrees well with the literature data for ex vivo permeation studies, along with the percent height reduction of the MN. Based on the suggested mathematical model, when loading 0.39 mg of ceftriaxone, the prediction indicates that approximately 93% of the drug will be cleared from the bloodstream within 24 h. The proposed modeling strategy can be utilized to optimize drug transport behavior using DMNs.</description><subject>Administration, Cutaneous</subject><subject>Animals</subject><subject>Ceftriaxone - administration &amp; dosage</subject><subject>Ceftriaxone - pharmacokinetics</subject><subject>Drug Delivery Systems - methods</subject><subject>Drug Liberation</subject><subject>Models, Theoretical</subject><subject>Needles</subject><subject>Polymers - chemistry</subject><subject>Povidone - chemistry</subject><subject>Skin - metabolism</subject><subject>Skin Absorption - drug effects</subject><subject>Solubility</subject><issn>1543-8384</issn><issn>1543-8392</issn><issn>1543-8392</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMtOwzAQRS0Eorx-AYUdmxQ_W4cdtOUhgUAC1tHEmZQgJy52Uql_j0sLEjtWM6O5947mEHLG6JBRzi7AhGHj7OIdfAMG-24oDaUy4zvkgCkpUi0yvvvbazkghyF8UMql4mKfDOJaZeMxPyDu0ZVo63aeuCqZ1iE4u1xPj7XxrkUsLabXELBMXj20ocR40SZT38-TafQt0a8uk1lVoenCd8SqhaY23_2zs6sGfUjqNnlxtu9q1x6TvQpswJNtPSJvN7PXyV368HR7P7l6SIGLcZfKUo_kCDQTrOQlF0VmKokKi8pAAZxrwc2IV1oWivGMQiGpVjAGgFFW6EKLI3K-yV1499lj6PKmDgathRZdH3LBqJBSiUxFabaRxo9D8FjlC1834Fc5o_madx55539451ve0Xu6PdMXDZa_zh_AUaA2gnXGh-t9G7_-R_AX5iKV3A</recordid><startdate>20241007</startdate><enddate>20241007</enddate><creator>Yadav, Prateek R.</creator><creator>Hingonia, Pratinav</creator><creator>Das, Diganta B.</creator><creator>Pattanayek, Sudip K.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9827-7232</orcidid></search><sort><creationdate>20241007</creationdate><title>Modeling of Dissolving Microneedle-Based Transdermal Drug Delivery: Effects of Dynamics of Polymers in Solution</title><author>Yadav, Prateek R. ; Hingonia, Pratinav ; Das, Diganta B. ; Pattanayek, Sudip K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a237t-4d8646a8131d2d23b9cf4e5ebfcaba22832c62f84b51290ab4085a7aaa69b8b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Administration, Cutaneous</topic><topic>Animals</topic><topic>Ceftriaxone - administration &amp; dosage</topic><topic>Ceftriaxone - pharmacokinetics</topic><topic>Drug Delivery Systems - methods</topic><topic>Drug Liberation</topic><topic>Models, Theoretical</topic><topic>Needles</topic><topic>Polymers - chemistry</topic><topic>Povidone - chemistry</topic><topic>Skin - metabolism</topic><topic>Skin Absorption - drug effects</topic><topic>Solubility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yadav, Prateek R.</creatorcontrib><creatorcontrib>Hingonia, Pratinav</creatorcontrib><creatorcontrib>Das, Diganta B.</creatorcontrib><creatorcontrib>Pattanayek, Sudip K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadav, Prateek R.</au><au>Hingonia, Pratinav</au><au>Das, Diganta B.</au><au>Pattanayek, Sudip K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of Dissolving Microneedle-Based Transdermal Drug Delivery: Effects of Dynamics of Polymers in Solution</atitle><jtitle>Molecular pharmaceutics</jtitle><addtitle>Mol. Pharmaceutics</addtitle><date>2024-10-07</date><risdate>2024</risdate><volume>21</volume><issue>10</issue><spage>5104</spage><epage>5114</epage><pages>5104-5114</pages><issn>1543-8384</issn><issn>1543-8392</issn><eissn>1543-8392</eissn><abstract>Dissolving microneedle (DMN)-assisted transdermal drug delivery (TDD) has received attention from the scientific community in recent years due to its ability to control the rate of drug delivery through its design, the choice of polymers, and its composition. The dissolution of the polymer depends strongly on the polymer–solvent interaction and polymer physics. Here, we developed a mathematical model based on the physicochemical parameters of DMNs and polymer physics to determine the drug release profiles. An annular gap width is defined when the MN is inserted in the skin, accumulating interstitial fluid (ISF) from the surrounding skin and acting as a boundary layer between the skin and the MN. Poly­(vinylpyrrolidone) (PVP) is used as a model dissolving polymer, and ceftriaxone is used as a representative drug. The model agrees well with the literature data for ex vivo permeation studies, along with the percent height reduction of the MN. Based on the suggested mathematical model, when loading 0.39 mg of ceftriaxone, the prediction indicates that approximately 93% of the drug will be cleared from the bloodstream within 24 h. The proposed modeling strategy can be utilized to optimize drug transport behavior using DMNs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39259772</pmid><doi>10.1021/acs.molpharmaceut.4c00492</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9827-7232</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1543-8384
ispartof Molecular pharmaceutics, 2024-10, Vol.21 (10), p.5104-5114
issn 1543-8384
1543-8392
1543-8392
language eng
recordid cdi_proquest_miscellaneous_3103445395
source American Chemical Society; MEDLINE
subjects Administration, Cutaneous
Animals
Ceftriaxone - administration & dosage
Ceftriaxone - pharmacokinetics
Drug Delivery Systems - methods
Drug Liberation
Models, Theoretical
Needles
Polymers - chemistry
Povidone - chemistry
Skin - metabolism
Skin Absorption - drug effects
Solubility
title Modeling of Dissolving Microneedle-Based Transdermal Drug Delivery: Effects of Dynamics of Polymers in Solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20Dissolving%20Microneedle-Based%20Transdermal%20Drug%20Delivery:%20Effects%20of%20Dynamics%20of%20Polymers%20in%20Solution&rft.jtitle=Molecular%20pharmaceutics&rft.au=Yadav,%20Prateek%20R.&rft.date=2024-10-07&rft.volume=21&rft.issue=10&rft.spage=5104&rft.epage=5114&rft.pages=5104-5114&rft.issn=1543-8384&rft.eissn=1543-8392&rft_id=info:doi/10.1021/acs.molpharmaceut.4c00492&rft_dat=%3Cproquest_cross%3E3103445395%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103445395&rft_id=info:pmid/39259772&rfr_iscdi=true