Heteroatom Immobilization Engineering toward High-Performance Metal Anodes
Heteroatom immobilization engineering (HAIE) is becoming a forefront approach in materials science and engineering, focusing on the precise control and manipulation of atomic-level interactions within heterogeneous systems. HAIE has emerged as an efficient strategy to fabricate single-atom sites for...
Gespeichert in:
Veröffentlicht in: | ACS nano 2024-09, Vol.18 (38), p.25966-25985 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25985 |
---|---|
container_issue | 38 |
container_start_page | 25966 |
container_title | ACS nano |
container_volume | 18 |
creator | Gu, Jianan Zhang, Yongzheng Shi, Yu Jin, Yilong Chen, Hao Sun, Xin Wang, Yanhong Zhan, Liang Du, Zhiguo Yang, Shubin Li, Meicheng |
description | Heteroatom immobilization engineering (HAIE) is becoming a forefront approach in materials science and engineering, focusing on the precise control and manipulation of atomic-level interactions within heterogeneous systems. HAIE has emerged as an efficient strategy to fabricate single-atom sites for enhancing the performance of metal-based batteries. Despite the significant progress achieved through HAIE in metal anodes for metal-based batteries, several critical challenges such as metal dendrites, side reactions, and sluggish reaction kinetics are still present. In this review, we delve into the fundamental principles underlying heteroatom immobilization engineering in metal anodes, aiming to elucidate its role in enhancing the electrochemical performance in batteries. We systematically investigate how HAIE facilitates uniform nucleation of metal in anodes, how HAIE inhibits side reactions at the metal anode–electrolyte interface, and the role of HAIE in promoting the desolvation of metal ions and accelerating reaction kinetics within metal-based batteries. Finally, we discuss various strategies for implementing HAIE in electrode materials, such as high-temperature pyrolysis, vacancy reduction, and molten-salt etching and anchoring. These strategies include selecting appropriate heteroatoms, optimizing immobilization methods, and constructing material architectures. They can be utilized to further refine the performance to enhance the capabilities of HAIE and facilitate its widespread application in next-generation metal-based battery technologies. |
doi_str_mv | 10.1021/acsnano.4c08831 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3103444709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103444709</sourcerecordid><originalsourceid>FETCH-LOGICAL-a217t-28d223af8af2c60859ae3591c29424e7f0c8ae639fbc11c84e98da41dc82554b3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqUws6GMSCjUX0mcsaoKLSqCASQ2y3EuxVViFzsRgl9PUEM3prvheV_dPQhdEnxLMCVTpYNV1t1yjYVg5AiNSc7SGIv07fiwJ2SEzkLYYpxkIktP0YjlNCWYpGP0sIQWvFOta6JV07jC1OZbtcbZaGE3xgJ4YzdR6z6VL6Ol2bzHz-Ar5xtlNUSP0Ko6mllXQjhHJ5WqA1wMc4Je7xYv82W8frpfzWfrWFGStTEVJaVMVUJVVKf9dbkCluRE05xTDlmFtVCQsrwqNCFacMhFqTgptaBJwgs2Qdf73p13Hx2EVjYmaKhrZcF1QTKCGec8w3mPTveo9i4ED5XcedMo_yUJlr8C5SBQDgL7xNVQ3hUNlAf-z1gP3OyBPim3rvO2__Xfuh-zOnxC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103444709</pqid></control><display><type>article</type><title>Heteroatom Immobilization Engineering toward High-Performance Metal Anodes</title><source>ACS Publications</source><creator>Gu, Jianan ; Zhang, Yongzheng ; Shi, Yu ; Jin, Yilong ; Chen, Hao ; Sun, Xin ; Wang, Yanhong ; Zhan, Liang ; Du, Zhiguo ; Yang, Shubin ; Li, Meicheng</creator><creatorcontrib>Gu, Jianan ; Zhang, Yongzheng ; Shi, Yu ; Jin, Yilong ; Chen, Hao ; Sun, Xin ; Wang, Yanhong ; Zhan, Liang ; Du, Zhiguo ; Yang, Shubin ; Li, Meicheng</creatorcontrib><description>Heteroatom immobilization engineering (HAIE) is becoming a forefront approach in materials science and engineering, focusing on the precise control and manipulation of atomic-level interactions within heterogeneous systems. HAIE has emerged as an efficient strategy to fabricate single-atom sites for enhancing the performance of metal-based batteries. Despite the significant progress achieved through HAIE in metal anodes for metal-based batteries, several critical challenges such as metal dendrites, side reactions, and sluggish reaction kinetics are still present. In this review, we delve into the fundamental principles underlying heteroatom immobilization engineering in metal anodes, aiming to elucidate its role in enhancing the electrochemical performance in batteries. We systematically investigate how HAIE facilitates uniform nucleation of metal in anodes, how HAIE inhibits side reactions at the metal anode–electrolyte interface, and the role of HAIE in promoting the desolvation of metal ions and accelerating reaction kinetics within metal-based batteries. Finally, we discuss various strategies for implementing HAIE in electrode materials, such as high-temperature pyrolysis, vacancy reduction, and molten-salt etching and anchoring. These strategies include selecting appropriate heteroatoms, optimizing immobilization methods, and constructing material architectures. They can be utilized to further refine the performance to enhance the capabilities of HAIE and facilitate its widespread application in next-generation metal-based battery technologies.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c08831</identifier><identifier>PMID: 39261016</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2024-09, Vol.18 (38), p.25966-25985</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a217t-28d223af8af2c60859ae3591c29424e7f0c8ae639fbc11c84e98da41dc82554b3</cites><orcidid>0000-0003-3914-5760 ; 0000-0002-5640-7198 ; 0000-0003-3889-1710 ; 0000-0001-9546-9458 ; 0000-0001-9973-9785 ; 0000-0002-0731-741X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.4c08831$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.4c08831$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39261016$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gu, Jianan</creatorcontrib><creatorcontrib>Zhang, Yongzheng</creatorcontrib><creatorcontrib>Shi, Yu</creatorcontrib><creatorcontrib>Jin, Yilong</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Wang, Yanhong</creatorcontrib><creatorcontrib>Zhan, Liang</creatorcontrib><creatorcontrib>Du, Zhiguo</creatorcontrib><creatorcontrib>Yang, Shubin</creatorcontrib><creatorcontrib>Li, Meicheng</creatorcontrib><title>Heteroatom Immobilization Engineering toward High-Performance Metal Anodes</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Heteroatom immobilization engineering (HAIE) is becoming a forefront approach in materials science and engineering, focusing on the precise control and manipulation of atomic-level interactions within heterogeneous systems. HAIE has emerged as an efficient strategy to fabricate single-atom sites for enhancing the performance of metal-based batteries. Despite the significant progress achieved through HAIE in metal anodes for metal-based batteries, several critical challenges such as metal dendrites, side reactions, and sluggish reaction kinetics are still present. In this review, we delve into the fundamental principles underlying heteroatom immobilization engineering in metal anodes, aiming to elucidate its role in enhancing the electrochemical performance in batteries. We systematically investigate how HAIE facilitates uniform nucleation of metal in anodes, how HAIE inhibits side reactions at the metal anode–electrolyte interface, and the role of HAIE in promoting the desolvation of metal ions and accelerating reaction kinetics within metal-based batteries. Finally, we discuss various strategies for implementing HAIE in electrode materials, such as high-temperature pyrolysis, vacancy reduction, and molten-salt etching and anchoring. These strategies include selecting appropriate heteroatoms, optimizing immobilization methods, and constructing material architectures. They can be utilized to further refine the performance to enhance the capabilities of HAIE and facilitate its widespread application in next-generation metal-based battery technologies.</description><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EoqUws6GMSCjUX0mcsaoKLSqCASQ2y3EuxVViFzsRgl9PUEM3prvheV_dPQhdEnxLMCVTpYNV1t1yjYVg5AiNSc7SGIv07fiwJ2SEzkLYYpxkIktP0YjlNCWYpGP0sIQWvFOta6JV07jC1OZbtcbZaGE3xgJ4YzdR6z6VL6Ol2bzHz-Ar5xtlNUSP0Ko6mllXQjhHJ5WqA1wMc4Je7xYv82W8frpfzWfrWFGStTEVJaVMVUJVVKf9dbkCluRE05xTDlmFtVCQsrwqNCFacMhFqTgptaBJwgs2Qdf73p13Hx2EVjYmaKhrZcF1QTKCGec8w3mPTveo9i4ED5XcedMo_yUJlr8C5SBQDgL7xNVQ3hUNlAf-z1gP3OyBPim3rvO2__Xfuh-zOnxC</recordid><startdate>20240911</startdate><enddate>20240911</enddate><creator>Gu, Jianan</creator><creator>Zhang, Yongzheng</creator><creator>Shi, Yu</creator><creator>Jin, Yilong</creator><creator>Chen, Hao</creator><creator>Sun, Xin</creator><creator>Wang, Yanhong</creator><creator>Zhan, Liang</creator><creator>Du, Zhiguo</creator><creator>Yang, Shubin</creator><creator>Li, Meicheng</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3914-5760</orcidid><orcidid>https://orcid.org/0000-0002-5640-7198</orcidid><orcidid>https://orcid.org/0000-0003-3889-1710</orcidid><orcidid>https://orcid.org/0000-0001-9546-9458</orcidid><orcidid>https://orcid.org/0000-0001-9973-9785</orcidid><orcidid>https://orcid.org/0000-0002-0731-741X</orcidid></search><sort><creationdate>20240911</creationdate><title>Heteroatom Immobilization Engineering toward High-Performance Metal Anodes</title><author>Gu, Jianan ; Zhang, Yongzheng ; Shi, Yu ; Jin, Yilong ; Chen, Hao ; Sun, Xin ; Wang, Yanhong ; Zhan, Liang ; Du, Zhiguo ; Yang, Shubin ; Li, Meicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a217t-28d223af8af2c60859ae3591c29424e7f0c8ae639fbc11c84e98da41dc82554b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Jianan</creatorcontrib><creatorcontrib>Zhang, Yongzheng</creatorcontrib><creatorcontrib>Shi, Yu</creatorcontrib><creatorcontrib>Jin, Yilong</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Wang, Yanhong</creatorcontrib><creatorcontrib>Zhan, Liang</creatorcontrib><creatorcontrib>Du, Zhiguo</creatorcontrib><creatorcontrib>Yang, Shubin</creatorcontrib><creatorcontrib>Li, Meicheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Jianan</au><au>Zhang, Yongzheng</au><au>Shi, Yu</au><au>Jin, Yilong</au><au>Chen, Hao</au><au>Sun, Xin</au><au>Wang, Yanhong</au><au>Zhan, Liang</au><au>Du, Zhiguo</au><au>Yang, Shubin</au><au>Li, Meicheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heteroatom Immobilization Engineering toward High-Performance Metal Anodes</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-09-11</date><risdate>2024</risdate><volume>18</volume><issue>38</issue><spage>25966</spage><epage>25985</epage><pages>25966-25985</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>Heteroatom immobilization engineering (HAIE) is becoming a forefront approach in materials science and engineering, focusing on the precise control and manipulation of atomic-level interactions within heterogeneous systems. HAIE has emerged as an efficient strategy to fabricate single-atom sites for enhancing the performance of metal-based batteries. Despite the significant progress achieved through HAIE in metal anodes for metal-based batteries, several critical challenges such as metal dendrites, side reactions, and sluggish reaction kinetics are still present. In this review, we delve into the fundamental principles underlying heteroatom immobilization engineering in metal anodes, aiming to elucidate its role in enhancing the electrochemical performance in batteries. We systematically investigate how HAIE facilitates uniform nucleation of metal in anodes, how HAIE inhibits side reactions at the metal anode–electrolyte interface, and the role of HAIE in promoting the desolvation of metal ions and accelerating reaction kinetics within metal-based batteries. Finally, we discuss various strategies for implementing HAIE in electrode materials, such as high-temperature pyrolysis, vacancy reduction, and molten-salt etching and anchoring. These strategies include selecting appropriate heteroatoms, optimizing immobilization methods, and constructing material architectures. They can be utilized to further refine the performance to enhance the capabilities of HAIE and facilitate its widespread application in next-generation metal-based battery technologies.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39261016</pmid><doi>10.1021/acsnano.4c08831</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3914-5760</orcidid><orcidid>https://orcid.org/0000-0002-5640-7198</orcidid><orcidid>https://orcid.org/0000-0003-3889-1710</orcidid><orcidid>https://orcid.org/0000-0001-9546-9458</orcidid><orcidid>https://orcid.org/0000-0001-9973-9785</orcidid><orcidid>https://orcid.org/0000-0002-0731-741X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2024-09, Vol.18 (38), p.25966-25985 |
issn | 1936-0851 1936-086X 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_3103444709 |
source | ACS Publications |
title | Heteroatom Immobilization Engineering toward High-Performance Metal Anodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heteroatom%20Immobilization%20Engineering%20toward%20High-Performance%20Metal%20Anodes&rft.jtitle=ACS%20nano&rft.au=Gu,%20Jianan&rft.date=2024-09-11&rft.volume=18&rft.issue=38&rft.spage=25966&rft.epage=25985&rft.pages=25966-25985&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c08831&rft_dat=%3Cproquest_cross%3E3103444709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103444709&rft_id=info:pmid/39261016&rfr_iscdi=true |