Heteroatom Immobilization Engineering toward High-Performance Metal Anodes

Heteroatom immobilization engineering (HAIE) is becoming a forefront approach in materials science and engineering, focusing on the precise control and manipulation of atomic-level interactions within heterogeneous systems. HAIE has emerged as an efficient strategy to fabricate single-atom sites for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2024-09, Vol.18 (38), p.25966-25985
Hauptverfasser: Gu, Jianan, Zhang, Yongzheng, Shi, Yu, Jin, Yilong, Chen, Hao, Sun, Xin, Wang, Yanhong, Zhan, Liang, Du, Zhiguo, Yang, Shubin, Li, Meicheng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25985
container_issue 38
container_start_page 25966
container_title ACS nano
container_volume 18
creator Gu, Jianan
Zhang, Yongzheng
Shi, Yu
Jin, Yilong
Chen, Hao
Sun, Xin
Wang, Yanhong
Zhan, Liang
Du, Zhiguo
Yang, Shubin
Li, Meicheng
description Heteroatom immobilization engineering (HAIE) is becoming a forefront approach in materials science and engineering, focusing on the precise control and manipulation of atomic-level interactions within heterogeneous systems. HAIE has emerged as an efficient strategy to fabricate single-atom sites for enhancing the performance of metal-based batteries. Despite the significant progress achieved through HAIE in metal anodes for metal-based batteries, several critical challenges such as metal dendrites, side reactions, and sluggish reaction kinetics are still present. In this review, we delve into the fundamental principles underlying heteroatom immobilization engineering in metal anodes, aiming to elucidate its role in enhancing the electrochemical performance in batteries. We systematically investigate how HAIE facilitates uniform nucleation of metal in anodes, how HAIE inhibits side reactions at the metal anode–electrolyte interface, and the role of HAIE in promoting the desolvation of metal ions and accelerating reaction kinetics within metal-based batteries. Finally, we discuss various strategies for implementing HAIE in electrode materials, such as high-temperature pyrolysis, vacancy reduction, and molten-salt etching and anchoring. These strategies include selecting appropriate heteroatoms, optimizing immobilization methods, and constructing material architectures. They can be utilized to further refine the performance to enhance the capabilities of HAIE and facilitate its widespread application in next-generation metal-based battery technologies.
doi_str_mv 10.1021/acsnano.4c08831
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3103444709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103444709</sourcerecordid><originalsourceid>FETCH-LOGICAL-a217t-28d223af8af2c60859ae3591c29424e7f0c8ae639fbc11c84e98da41dc82554b3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqUws6GMSCjUX0mcsaoKLSqCASQ2y3EuxVViFzsRgl9PUEM3prvheV_dPQhdEnxLMCVTpYNV1t1yjYVg5AiNSc7SGIv07fiwJ2SEzkLYYpxkIktP0YjlNCWYpGP0sIQWvFOta6JV07jC1OZbtcbZaGE3xgJ4YzdR6z6VL6Ol2bzHz-Ar5xtlNUSP0Ko6mllXQjhHJ5WqA1wMc4Je7xYv82W8frpfzWfrWFGStTEVJaVMVUJVVKf9dbkCluRE05xTDlmFtVCQsrwqNCFacMhFqTgptaBJwgs2Qdf73p13Hx2EVjYmaKhrZcF1QTKCGec8w3mPTveo9i4ED5XcedMo_yUJlr8C5SBQDgL7xNVQ3hUNlAf-z1gP3OyBPim3rvO2__Xfuh-zOnxC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103444709</pqid></control><display><type>article</type><title>Heteroatom Immobilization Engineering toward High-Performance Metal Anodes</title><source>ACS Publications</source><creator>Gu, Jianan ; Zhang, Yongzheng ; Shi, Yu ; Jin, Yilong ; Chen, Hao ; Sun, Xin ; Wang, Yanhong ; Zhan, Liang ; Du, Zhiguo ; Yang, Shubin ; Li, Meicheng</creator><creatorcontrib>Gu, Jianan ; Zhang, Yongzheng ; Shi, Yu ; Jin, Yilong ; Chen, Hao ; Sun, Xin ; Wang, Yanhong ; Zhan, Liang ; Du, Zhiguo ; Yang, Shubin ; Li, Meicheng</creatorcontrib><description>Heteroatom immobilization engineering (HAIE) is becoming a forefront approach in materials science and engineering, focusing on the precise control and manipulation of atomic-level interactions within heterogeneous systems. HAIE has emerged as an efficient strategy to fabricate single-atom sites for enhancing the performance of metal-based batteries. Despite the significant progress achieved through HAIE in metal anodes for metal-based batteries, several critical challenges such as metal dendrites, side reactions, and sluggish reaction kinetics are still present. In this review, we delve into the fundamental principles underlying heteroatom immobilization engineering in metal anodes, aiming to elucidate its role in enhancing the electrochemical performance in batteries. We systematically investigate how HAIE facilitates uniform nucleation of metal in anodes, how HAIE inhibits side reactions at the metal anode–electrolyte interface, and the role of HAIE in promoting the desolvation of metal ions and accelerating reaction kinetics within metal-based batteries. Finally, we discuss various strategies for implementing HAIE in electrode materials, such as high-temperature pyrolysis, vacancy reduction, and molten-salt etching and anchoring. These strategies include selecting appropriate heteroatoms, optimizing immobilization methods, and constructing material architectures. They can be utilized to further refine the performance to enhance the capabilities of HAIE and facilitate its widespread application in next-generation metal-based battery technologies.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c08831</identifier><identifier>PMID: 39261016</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2024-09, Vol.18 (38), p.25966-25985</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a217t-28d223af8af2c60859ae3591c29424e7f0c8ae639fbc11c84e98da41dc82554b3</cites><orcidid>0000-0003-3914-5760 ; 0000-0002-5640-7198 ; 0000-0003-3889-1710 ; 0000-0001-9546-9458 ; 0000-0001-9973-9785 ; 0000-0002-0731-741X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.4c08831$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.4c08831$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39261016$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gu, Jianan</creatorcontrib><creatorcontrib>Zhang, Yongzheng</creatorcontrib><creatorcontrib>Shi, Yu</creatorcontrib><creatorcontrib>Jin, Yilong</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Wang, Yanhong</creatorcontrib><creatorcontrib>Zhan, Liang</creatorcontrib><creatorcontrib>Du, Zhiguo</creatorcontrib><creatorcontrib>Yang, Shubin</creatorcontrib><creatorcontrib>Li, Meicheng</creatorcontrib><title>Heteroatom Immobilization Engineering toward High-Performance Metal Anodes</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Heteroatom immobilization engineering (HAIE) is becoming a forefront approach in materials science and engineering, focusing on the precise control and manipulation of atomic-level interactions within heterogeneous systems. HAIE has emerged as an efficient strategy to fabricate single-atom sites for enhancing the performance of metal-based batteries. Despite the significant progress achieved through HAIE in metal anodes for metal-based batteries, several critical challenges such as metal dendrites, side reactions, and sluggish reaction kinetics are still present. In this review, we delve into the fundamental principles underlying heteroatom immobilization engineering in metal anodes, aiming to elucidate its role in enhancing the electrochemical performance in batteries. We systematically investigate how HAIE facilitates uniform nucleation of metal in anodes, how HAIE inhibits side reactions at the metal anode–electrolyte interface, and the role of HAIE in promoting the desolvation of metal ions and accelerating reaction kinetics within metal-based batteries. Finally, we discuss various strategies for implementing HAIE in electrode materials, such as high-temperature pyrolysis, vacancy reduction, and molten-salt etching and anchoring. These strategies include selecting appropriate heteroatoms, optimizing immobilization methods, and constructing material architectures. They can be utilized to further refine the performance to enhance the capabilities of HAIE and facilitate its widespread application in next-generation metal-based battery technologies.</description><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EoqUws6GMSCjUX0mcsaoKLSqCASQ2y3EuxVViFzsRgl9PUEM3prvheV_dPQhdEnxLMCVTpYNV1t1yjYVg5AiNSc7SGIv07fiwJ2SEzkLYYpxkIktP0YjlNCWYpGP0sIQWvFOta6JV07jC1OZbtcbZaGE3xgJ4YzdR6z6VL6Ol2bzHz-Ar5xtlNUSP0Ko6mllXQjhHJ5WqA1wMc4Je7xYv82W8frpfzWfrWFGStTEVJaVMVUJVVKf9dbkCluRE05xTDlmFtVCQsrwqNCFacMhFqTgptaBJwgs2Qdf73p13Hx2EVjYmaKhrZcF1QTKCGec8w3mPTveo9i4ED5XcedMo_yUJlr8C5SBQDgL7xNVQ3hUNlAf-z1gP3OyBPim3rvO2__Xfuh-zOnxC</recordid><startdate>20240911</startdate><enddate>20240911</enddate><creator>Gu, Jianan</creator><creator>Zhang, Yongzheng</creator><creator>Shi, Yu</creator><creator>Jin, Yilong</creator><creator>Chen, Hao</creator><creator>Sun, Xin</creator><creator>Wang, Yanhong</creator><creator>Zhan, Liang</creator><creator>Du, Zhiguo</creator><creator>Yang, Shubin</creator><creator>Li, Meicheng</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3914-5760</orcidid><orcidid>https://orcid.org/0000-0002-5640-7198</orcidid><orcidid>https://orcid.org/0000-0003-3889-1710</orcidid><orcidid>https://orcid.org/0000-0001-9546-9458</orcidid><orcidid>https://orcid.org/0000-0001-9973-9785</orcidid><orcidid>https://orcid.org/0000-0002-0731-741X</orcidid></search><sort><creationdate>20240911</creationdate><title>Heteroatom Immobilization Engineering toward High-Performance Metal Anodes</title><author>Gu, Jianan ; Zhang, Yongzheng ; Shi, Yu ; Jin, Yilong ; Chen, Hao ; Sun, Xin ; Wang, Yanhong ; Zhan, Liang ; Du, Zhiguo ; Yang, Shubin ; Li, Meicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a217t-28d223af8af2c60859ae3591c29424e7f0c8ae639fbc11c84e98da41dc82554b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Jianan</creatorcontrib><creatorcontrib>Zhang, Yongzheng</creatorcontrib><creatorcontrib>Shi, Yu</creatorcontrib><creatorcontrib>Jin, Yilong</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Wang, Yanhong</creatorcontrib><creatorcontrib>Zhan, Liang</creatorcontrib><creatorcontrib>Du, Zhiguo</creatorcontrib><creatorcontrib>Yang, Shubin</creatorcontrib><creatorcontrib>Li, Meicheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Jianan</au><au>Zhang, Yongzheng</au><au>Shi, Yu</au><au>Jin, Yilong</au><au>Chen, Hao</au><au>Sun, Xin</au><au>Wang, Yanhong</au><au>Zhan, Liang</au><au>Du, Zhiguo</au><au>Yang, Shubin</au><au>Li, Meicheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heteroatom Immobilization Engineering toward High-Performance Metal Anodes</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-09-11</date><risdate>2024</risdate><volume>18</volume><issue>38</issue><spage>25966</spage><epage>25985</epage><pages>25966-25985</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>Heteroatom immobilization engineering (HAIE) is becoming a forefront approach in materials science and engineering, focusing on the precise control and manipulation of atomic-level interactions within heterogeneous systems. HAIE has emerged as an efficient strategy to fabricate single-atom sites for enhancing the performance of metal-based batteries. Despite the significant progress achieved through HAIE in metal anodes for metal-based batteries, several critical challenges such as metal dendrites, side reactions, and sluggish reaction kinetics are still present. In this review, we delve into the fundamental principles underlying heteroatom immobilization engineering in metal anodes, aiming to elucidate its role in enhancing the electrochemical performance in batteries. We systematically investigate how HAIE facilitates uniform nucleation of metal in anodes, how HAIE inhibits side reactions at the metal anode–electrolyte interface, and the role of HAIE in promoting the desolvation of metal ions and accelerating reaction kinetics within metal-based batteries. Finally, we discuss various strategies for implementing HAIE in electrode materials, such as high-temperature pyrolysis, vacancy reduction, and molten-salt etching and anchoring. These strategies include selecting appropriate heteroatoms, optimizing immobilization methods, and constructing material architectures. They can be utilized to further refine the performance to enhance the capabilities of HAIE and facilitate its widespread application in next-generation metal-based battery technologies.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39261016</pmid><doi>10.1021/acsnano.4c08831</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3914-5760</orcidid><orcidid>https://orcid.org/0000-0002-5640-7198</orcidid><orcidid>https://orcid.org/0000-0003-3889-1710</orcidid><orcidid>https://orcid.org/0000-0001-9546-9458</orcidid><orcidid>https://orcid.org/0000-0001-9973-9785</orcidid><orcidid>https://orcid.org/0000-0002-0731-741X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2024-09, Vol.18 (38), p.25966-25985
issn 1936-0851
1936-086X
1936-086X
language eng
recordid cdi_proquest_miscellaneous_3103444709
source ACS Publications
title Heteroatom Immobilization Engineering toward High-Performance Metal Anodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heteroatom%20Immobilization%20Engineering%20toward%20High-Performance%20Metal%20Anodes&rft.jtitle=ACS%20nano&rft.au=Gu,%20Jianan&rft.date=2024-09-11&rft.volume=18&rft.issue=38&rft.spage=25966&rft.epage=25985&rft.pages=25966-25985&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c08831&rft_dat=%3Cproquest_cross%3E3103444709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103444709&rft_id=info:pmid/39261016&rfr_iscdi=true