Extending The Calendar Life of Fiber Lithium‐Ion Batteries to 200 Days with Ultra‐High Barrier Polymer Tubes

Scalable fiber lithium‐ion batteries (FLIBs) have garnered significant attention due to huge potential applications in wearable technology. However, their widespread applications have been limited by inadequate cycle and calendar life, primarily due to the high permeability of the encapsulation laye...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-11, Vol.36 (45), p.e2409910-n/a
Hauptverfasser: Gong, Xiaocheng, Jiang, Haibo, Lu, Chenhao, Zhang, Kun, Long, Yao, Yang, Zhe, Sun, Shiqi, Chang, Yingfan, Ma, Longmei, Peng, Huisheng, Wang, Bingjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 45
container_start_page e2409910
container_title Advanced materials (Weinheim)
container_volume 36
creator Gong, Xiaocheng
Jiang, Haibo
Lu, Chenhao
Zhang, Kun
Long, Yao
Yang, Zhe
Sun, Shiqi
Chang, Yingfan
Ma, Longmei
Peng, Huisheng
Wang, Bingjie
description Scalable fiber lithium‐ion batteries (FLIBs) have garnered significant attention due to huge potential applications in wearable technology. However, their widespread applications have been limited by inadequate cycle and calendar life, primarily due to the high permeability of the encapsulation layer to water vapor in ambient air. To address this challenge, an ultra‐high barrier composite tube is developed by blending polytrifluorochloroethylene (PCTFE) with organically modified montmorillonite (OMMT) for the continuous packaging of FLIBs. Due to the high crystallinity (≈40.21%) and small free volume (103.443 Å3), the PCTFE tube exhibited a low water vapor transmission rate (WVTR) of 0.123 mg day−1 pkg−1. Furthermore, through the melt extrusion, OMMT with its plate‐like morphology are fully exfoliated and dispersed within the PCTFE matrix. This created more complex pathways for water, increasing the diffusion path length and thereby reducing WVTR to 0.006 mg day−1 pkg−1. This innovation enabled an ultra‐long calendar life of 200 days and cycle life of 870 cycles for FLIBs, with over 80% capacity retention in ambient air. Additionally, 2%OMMT‐PCTFE‐FLIBs exhibited excellent flexibility, retaining an impressive 85.31% capacity after 10 000 bending cycles. This research presents a simple yet effective approach to enhance the lifetime and practicality of FLIBs through building a high‐performance polymer‐based encapsulation layer. An ultra‐high barrier composite tube is developed by blending PCTFE with organically modified montmorillonite, resulting in an ultra‐low water vapor transmission rate of 0.006 mg day−1 pkg−1 due to the more complex and tortuous pathways for water permeation. The resulting 2%OMMT‐PCTFE‐FLIBs achieved an extended cycle life of 870 cycles and a calendar life of 200 days, with over 80% capacity retention.
doi_str_mv 10.1002/adma.202409910
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3102882847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102882847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2580-32215f93bf9562b0d58b2b2ca1f79614fd334aa8a52c0c52f2c7dac1980499043</originalsourceid><addsrcrecordid>eNqF0ctqGzEUBmBRGhon7bbLIuimm3GPjqSxtHScKzi0C2c9aGakWGEujjRD4l0fIc-YJ4mMkxS66erww6efgw4hXxlMGQD-NHVrpggoQGsGH8iESWRZSvIjmYDmMtO5UIfkKMY7ANA55J_IIdcoFc_FhGzOHgfb1b67pau1pQvTpGQCXXpnae_ouS_tLg1rP7bPf56u-o6emGGwwdtIh54iAD0120gfkqE3zRBMYpf-dp1cSCrQ332zbdNcjaWNn8mBM020X17nMbk5P1stLrPlr4urxXyZVWk1yDgik07z0mmZYwm1VCWWWBnmZjpnwtWcC2OUkVhBJdFhNatNxbQCoTUIfkx-7Hs3ob8fbRyK1sfKNo3pbD_GgjNApVCJWaLf_6F3_Ri6tF1SKFKlyllS072qQh9jsK7YBN-asC0YFLtbFLtbFO-3SA--vdaOZWvrd_72-QnoPXjwjd3-p66Yn17P_5a_ABVnlUE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124980861</pqid></control><display><type>article</type><title>Extending The Calendar Life of Fiber Lithium‐Ion Batteries to 200 Days with Ultra‐High Barrier Polymer Tubes</title><source>Access via Wiley Online Library</source><creator>Gong, Xiaocheng ; Jiang, Haibo ; Lu, Chenhao ; Zhang, Kun ; Long, Yao ; Yang, Zhe ; Sun, Shiqi ; Chang, Yingfan ; Ma, Longmei ; Peng, Huisheng ; Wang, Bingjie</creator><creatorcontrib>Gong, Xiaocheng ; Jiang, Haibo ; Lu, Chenhao ; Zhang, Kun ; Long, Yao ; Yang, Zhe ; Sun, Shiqi ; Chang, Yingfan ; Ma, Longmei ; Peng, Huisheng ; Wang, Bingjie</creatorcontrib><description>Scalable fiber lithium‐ion batteries (FLIBs) have garnered significant attention due to huge potential applications in wearable technology. However, their widespread applications have been limited by inadequate cycle and calendar life, primarily due to the high permeability of the encapsulation layer to water vapor in ambient air. To address this challenge, an ultra‐high barrier composite tube is developed by blending polytrifluorochloroethylene (PCTFE) with organically modified montmorillonite (OMMT) for the continuous packaging of FLIBs. Due to the high crystallinity (≈40.21%) and small free volume (103.443 Å3), the PCTFE tube exhibited a low water vapor transmission rate (WVTR) of 0.123 mg day−1 pkg−1. Furthermore, through the melt extrusion, OMMT with its plate‐like morphology are fully exfoliated and dispersed within the PCTFE matrix. This created more complex pathways for water, increasing the diffusion path length and thereby reducing WVTR to 0.006 mg day−1 pkg−1. This innovation enabled an ultra‐long calendar life of 200 days and cycle life of 870 cycles for FLIBs, with over 80% capacity retention in ambient air. Additionally, 2%OMMT‐PCTFE‐FLIBs exhibited excellent flexibility, retaining an impressive 85.31% capacity after 10 000 bending cycles. This research presents a simple yet effective approach to enhance the lifetime and practicality of FLIBs through building a high‐performance polymer‐based encapsulation layer. An ultra‐high barrier composite tube is developed by blending PCTFE with organically modified montmorillonite, resulting in an ultra‐low water vapor transmission rate of 0.006 mg day−1 pkg−1 due to the more complex and tortuous pathways for water permeation. The resulting 2%OMMT‐PCTFE‐FLIBs achieved an extended cycle life of 870 cycles and a calendar life of 200 days, with over 80% capacity retention.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202409910</identifier><identifier>PMID: 39258364</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>calendar life ; Calendars ; continuous preparation ; Diffusion rate ; Encapsulation ; Extrusion rate ; fiber electronic devices ; Lithium-ion batteries ; Montmorillonite ; Polychlorotrifluoroethylenes ; Polymers ; Tubes ; ultra‐high barrier ; Water vapor ; Wearable technology</subject><ispartof>Advanced materials (Weinheim), 2024-11, Vol.36 (45), p.e2409910-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2580-32215f93bf9562b0d58b2b2ca1f79614fd334aa8a52c0c52f2c7dac1980499043</cites><orcidid>0000-0002-0305-6267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202409910$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202409910$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39258364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gong, Xiaocheng</creatorcontrib><creatorcontrib>Jiang, Haibo</creatorcontrib><creatorcontrib>Lu, Chenhao</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Long, Yao</creatorcontrib><creatorcontrib>Yang, Zhe</creatorcontrib><creatorcontrib>Sun, Shiqi</creatorcontrib><creatorcontrib>Chang, Yingfan</creatorcontrib><creatorcontrib>Ma, Longmei</creatorcontrib><creatorcontrib>Peng, Huisheng</creatorcontrib><creatorcontrib>Wang, Bingjie</creatorcontrib><title>Extending The Calendar Life of Fiber Lithium‐Ion Batteries to 200 Days with Ultra‐High Barrier Polymer Tubes</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Scalable fiber lithium‐ion batteries (FLIBs) have garnered significant attention due to huge potential applications in wearable technology. However, their widespread applications have been limited by inadequate cycle and calendar life, primarily due to the high permeability of the encapsulation layer to water vapor in ambient air. To address this challenge, an ultra‐high barrier composite tube is developed by blending polytrifluorochloroethylene (PCTFE) with organically modified montmorillonite (OMMT) for the continuous packaging of FLIBs. Due to the high crystallinity (≈40.21%) and small free volume (103.443 Å3), the PCTFE tube exhibited a low water vapor transmission rate (WVTR) of 0.123 mg day−1 pkg−1. Furthermore, through the melt extrusion, OMMT with its plate‐like morphology are fully exfoliated and dispersed within the PCTFE matrix. This created more complex pathways for water, increasing the diffusion path length and thereby reducing WVTR to 0.006 mg day−1 pkg−1. This innovation enabled an ultra‐long calendar life of 200 days and cycle life of 870 cycles for FLIBs, with over 80% capacity retention in ambient air. Additionally, 2%OMMT‐PCTFE‐FLIBs exhibited excellent flexibility, retaining an impressive 85.31% capacity after 10 000 bending cycles. This research presents a simple yet effective approach to enhance the lifetime and practicality of FLIBs through building a high‐performance polymer‐based encapsulation layer. An ultra‐high barrier composite tube is developed by blending PCTFE with organically modified montmorillonite, resulting in an ultra‐low water vapor transmission rate of 0.006 mg day−1 pkg−1 due to the more complex and tortuous pathways for water permeation. The resulting 2%OMMT‐PCTFE‐FLIBs achieved an extended cycle life of 870 cycles and a calendar life of 200 days, with over 80% capacity retention.</description><subject>calendar life</subject><subject>Calendars</subject><subject>continuous preparation</subject><subject>Diffusion rate</subject><subject>Encapsulation</subject><subject>Extrusion rate</subject><subject>fiber electronic devices</subject><subject>Lithium-ion batteries</subject><subject>Montmorillonite</subject><subject>Polychlorotrifluoroethylenes</subject><subject>Polymers</subject><subject>Tubes</subject><subject>ultra‐high barrier</subject><subject>Water vapor</subject><subject>Wearable technology</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqF0ctqGzEUBmBRGhon7bbLIuimm3GPjqSxtHScKzi0C2c9aGakWGEujjRD4l0fIc-YJ4mMkxS66erww6efgw4hXxlMGQD-NHVrpggoQGsGH8iESWRZSvIjmYDmMtO5UIfkKMY7ANA55J_IIdcoFc_FhGzOHgfb1b67pau1pQvTpGQCXXpnae_ouS_tLg1rP7bPf56u-o6emGGwwdtIh54iAD0120gfkqE3zRBMYpf-dp1cSCrQ332zbdNcjaWNn8mBM020X17nMbk5P1stLrPlr4urxXyZVWk1yDgik07z0mmZYwm1VCWWWBnmZjpnwtWcC2OUkVhBJdFhNatNxbQCoTUIfkx-7Hs3ob8fbRyK1sfKNo3pbD_GgjNApVCJWaLf_6F3_Ri6tF1SKFKlyllS072qQh9jsK7YBN-asC0YFLtbFLtbFO-3SA--vdaOZWvrd_72-QnoPXjwjd3-p66Yn17P_5a_ABVnlUE</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Gong, Xiaocheng</creator><creator>Jiang, Haibo</creator><creator>Lu, Chenhao</creator><creator>Zhang, Kun</creator><creator>Long, Yao</creator><creator>Yang, Zhe</creator><creator>Sun, Shiqi</creator><creator>Chang, Yingfan</creator><creator>Ma, Longmei</creator><creator>Peng, Huisheng</creator><creator>Wang, Bingjie</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0305-6267</orcidid></search><sort><creationdate>20241101</creationdate><title>Extending The Calendar Life of Fiber Lithium‐Ion Batteries to 200 Days with Ultra‐High Barrier Polymer Tubes</title><author>Gong, Xiaocheng ; Jiang, Haibo ; Lu, Chenhao ; Zhang, Kun ; Long, Yao ; Yang, Zhe ; Sun, Shiqi ; Chang, Yingfan ; Ma, Longmei ; Peng, Huisheng ; Wang, Bingjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2580-32215f93bf9562b0d58b2b2ca1f79614fd334aa8a52c0c52f2c7dac1980499043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>calendar life</topic><topic>Calendars</topic><topic>continuous preparation</topic><topic>Diffusion rate</topic><topic>Encapsulation</topic><topic>Extrusion rate</topic><topic>fiber electronic devices</topic><topic>Lithium-ion batteries</topic><topic>Montmorillonite</topic><topic>Polychlorotrifluoroethylenes</topic><topic>Polymers</topic><topic>Tubes</topic><topic>ultra‐high barrier</topic><topic>Water vapor</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Xiaocheng</creatorcontrib><creatorcontrib>Jiang, Haibo</creatorcontrib><creatorcontrib>Lu, Chenhao</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Long, Yao</creatorcontrib><creatorcontrib>Yang, Zhe</creatorcontrib><creatorcontrib>Sun, Shiqi</creatorcontrib><creatorcontrib>Chang, Yingfan</creatorcontrib><creatorcontrib>Ma, Longmei</creatorcontrib><creatorcontrib>Peng, Huisheng</creatorcontrib><creatorcontrib>Wang, Bingjie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Xiaocheng</au><au>Jiang, Haibo</au><au>Lu, Chenhao</au><au>Zhang, Kun</au><au>Long, Yao</au><au>Yang, Zhe</au><au>Sun, Shiqi</au><au>Chang, Yingfan</au><au>Ma, Longmei</au><au>Peng, Huisheng</au><au>Wang, Bingjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extending The Calendar Life of Fiber Lithium‐Ion Batteries to 200 Days with Ultra‐High Barrier Polymer Tubes</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>36</volume><issue>45</issue><spage>e2409910</spage><epage>n/a</epage><pages>e2409910-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Scalable fiber lithium‐ion batteries (FLIBs) have garnered significant attention due to huge potential applications in wearable technology. However, their widespread applications have been limited by inadequate cycle and calendar life, primarily due to the high permeability of the encapsulation layer to water vapor in ambient air. To address this challenge, an ultra‐high barrier composite tube is developed by blending polytrifluorochloroethylene (PCTFE) with organically modified montmorillonite (OMMT) for the continuous packaging of FLIBs. Due to the high crystallinity (≈40.21%) and small free volume (103.443 Å3), the PCTFE tube exhibited a low water vapor transmission rate (WVTR) of 0.123 mg day−1 pkg−1. Furthermore, through the melt extrusion, OMMT with its plate‐like morphology are fully exfoliated and dispersed within the PCTFE matrix. This created more complex pathways for water, increasing the diffusion path length and thereby reducing WVTR to 0.006 mg day−1 pkg−1. This innovation enabled an ultra‐long calendar life of 200 days and cycle life of 870 cycles for FLIBs, with over 80% capacity retention in ambient air. Additionally, 2%OMMT‐PCTFE‐FLIBs exhibited excellent flexibility, retaining an impressive 85.31% capacity after 10 000 bending cycles. This research presents a simple yet effective approach to enhance the lifetime and practicality of FLIBs through building a high‐performance polymer‐based encapsulation layer. An ultra‐high barrier composite tube is developed by blending PCTFE with organically modified montmorillonite, resulting in an ultra‐low water vapor transmission rate of 0.006 mg day−1 pkg−1 due to the more complex and tortuous pathways for water permeation. The resulting 2%OMMT‐PCTFE‐FLIBs achieved an extended cycle life of 870 cycles and a calendar life of 200 days, with over 80% capacity retention.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39258364</pmid><doi>10.1002/adma.202409910</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0305-6267</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-11, Vol.36 (45), p.e2409910-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3102882847
source Access via Wiley Online Library
subjects calendar life
Calendars
continuous preparation
Diffusion rate
Encapsulation
Extrusion rate
fiber electronic devices
Lithium-ion batteries
Montmorillonite
Polychlorotrifluoroethylenes
Polymers
Tubes
ultra‐high barrier
Water vapor
Wearable technology
title Extending The Calendar Life of Fiber Lithium‐Ion Batteries to 200 Days with Ultra‐High Barrier Polymer Tubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extending%20The%20Calendar%20Life%20of%20Fiber%20Lithium%E2%80%90Ion%20Batteries%20to%20200%20Days%20with%20Ultra%E2%80%90High%20Barrier%20Polymer%20Tubes&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Gong,%20Xiaocheng&rft.date=2024-11-01&rft.volume=36&rft.issue=45&rft.spage=e2409910&rft.epage=n/a&rft.pages=e2409910-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202409910&rft_dat=%3Cproquest_cross%3E3102882847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124980861&rft_id=info:pmid/39258364&rfr_iscdi=true