Extending The Calendar Life of Fiber Lithium‐Ion Batteries to 200 Days with Ultra‐High Barrier Polymer Tubes
Scalable fiber lithium‐ion batteries (FLIBs) have garnered significant attention due to huge potential applications in wearable technology. However, their widespread applications have been limited by inadequate cycle and calendar life, primarily due to the high permeability of the encapsulation laye...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-11, Vol.36 (45), p.e2409910-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 45 |
container_start_page | e2409910 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Gong, Xiaocheng Jiang, Haibo Lu, Chenhao Zhang, Kun Long, Yao Yang, Zhe Sun, Shiqi Chang, Yingfan Ma, Longmei Peng, Huisheng Wang, Bingjie |
description | Scalable fiber lithium‐ion batteries (FLIBs) have garnered significant attention due to huge potential applications in wearable technology. However, their widespread applications have been limited by inadequate cycle and calendar life, primarily due to the high permeability of the encapsulation layer to water vapor in ambient air. To address this challenge, an ultra‐high barrier composite tube is developed by blending polytrifluorochloroethylene (PCTFE) with organically modified montmorillonite (OMMT) for the continuous packaging of FLIBs. Due to the high crystallinity (≈40.21%) and small free volume (103.443 Å3), the PCTFE tube exhibited a low water vapor transmission rate (WVTR) of 0.123 mg day−1 pkg−1. Furthermore, through the melt extrusion, OMMT with its plate‐like morphology are fully exfoliated and dispersed within the PCTFE matrix. This created more complex pathways for water, increasing the diffusion path length and thereby reducing WVTR to 0.006 mg day−1 pkg−1. This innovation enabled an ultra‐long calendar life of 200 days and cycle life of 870 cycles for FLIBs, with over 80% capacity retention in ambient air. Additionally, 2%OMMT‐PCTFE‐FLIBs exhibited excellent flexibility, retaining an impressive 85.31% capacity after 10 000 bending cycles. This research presents a simple yet effective approach to enhance the lifetime and practicality of FLIBs through building a high‐performance polymer‐based encapsulation layer.
An ultra‐high barrier composite tube is developed by blending PCTFE with organically modified montmorillonite, resulting in an ultra‐low water vapor transmission rate of 0.006 mg day−1 pkg−1 due to the more complex and tortuous pathways for water permeation. The resulting 2%OMMT‐PCTFE‐FLIBs achieved an extended cycle life of 870 cycles and a calendar life of 200 days, with over 80% capacity retention. |
doi_str_mv | 10.1002/adma.202409910 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3102882847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102882847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2580-32215f93bf9562b0d58b2b2ca1f79614fd334aa8a52c0c52f2c7dac1980499043</originalsourceid><addsrcrecordid>eNqF0ctqGzEUBmBRGhon7bbLIuimm3GPjqSxtHScKzi0C2c9aGakWGEujjRD4l0fIc-YJ4mMkxS66erww6efgw4hXxlMGQD-NHVrpggoQGsGH8iESWRZSvIjmYDmMtO5UIfkKMY7ANA55J_IIdcoFc_FhGzOHgfb1b67pau1pQvTpGQCXXpnae_ouS_tLg1rP7bPf56u-o6emGGwwdtIh54iAD0120gfkqE3zRBMYpf-dp1cSCrQ332zbdNcjaWNn8mBM020X17nMbk5P1stLrPlr4urxXyZVWk1yDgik07z0mmZYwm1VCWWWBnmZjpnwtWcC2OUkVhBJdFhNatNxbQCoTUIfkx-7Hs3ob8fbRyK1sfKNo3pbD_GgjNApVCJWaLf_6F3_Ri6tF1SKFKlyllS072qQh9jsK7YBN-asC0YFLtbFLtbFO-3SA--vdaOZWvrd_72-QnoPXjwjd3-p66Yn17P_5a_ABVnlUE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124980861</pqid></control><display><type>article</type><title>Extending The Calendar Life of Fiber Lithium‐Ion Batteries to 200 Days with Ultra‐High Barrier Polymer Tubes</title><source>Access via Wiley Online Library</source><creator>Gong, Xiaocheng ; Jiang, Haibo ; Lu, Chenhao ; Zhang, Kun ; Long, Yao ; Yang, Zhe ; Sun, Shiqi ; Chang, Yingfan ; Ma, Longmei ; Peng, Huisheng ; Wang, Bingjie</creator><creatorcontrib>Gong, Xiaocheng ; Jiang, Haibo ; Lu, Chenhao ; Zhang, Kun ; Long, Yao ; Yang, Zhe ; Sun, Shiqi ; Chang, Yingfan ; Ma, Longmei ; Peng, Huisheng ; Wang, Bingjie</creatorcontrib><description>Scalable fiber lithium‐ion batteries (FLIBs) have garnered significant attention due to huge potential applications in wearable technology. However, their widespread applications have been limited by inadequate cycle and calendar life, primarily due to the high permeability of the encapsulation layer to water vapor in ambient air. To address this challenge, an ultra‐high barrier composite tube is developed by blending polytrifluorochloroethylene (PCTFE) with organically modified montmorillonite (OMMT) for the continuous packaging of FLIBs. Due to the high crystallinity (≈40.21%) and small free volume (103.443 Å3), the PCTFE tube exhibited a low water vapor transmission rate (WVTR) of 0.123 mg day−1 pkg−1. Furthermore, through the melt extrusion, OMMT with its plate‐like morphology are fully exfoliated and dispersed within the PCTFE matrix. This created more complex pathways for water, increasing the diffusion path length and thereby reducing WVTR to 0.006 mg day−1 pkg−1. This innovation enabled an ultra‐long calendar life of 200 days and cycle life of 870 cycles for FLIBs, with over 80% capacity retention in ambient air. Additionally, 2%OMMT‐PCTFE‐FLIBs exhibited excellent flexibility, retaining an impressive 85.31% capacity after 10 000 bending cycles. This research presents a simple yet effective approach to enhance the lifetime and practicality of FLIBs through building a high‐performance polymer‐based encapsulation layer.
An ultra‐high barrier composite tube is developed by blending PCTFE with organically modified montmorillonite, resulting in an ultra‐low water vapor transmission rate of 0.006 mg day−1 pkg−1 due to the more complex and tortuous pathways for water permeation. The resulting 2%OMMT‐PCTFE‐FLIBs achieved an extended cycle life of 870 cycles and a calendar life of 200 days, with over 80% capacity retention.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202409910</identifier><identifier>PMID: 39258364</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>calendar life ; Calendars ; continuous preparation ; Diffusion rate ; Encapsulation ; Extrusion rate ; fiber electronic devices ; Lithium-ion batteries ; Montmorillonite ; Polychlorotrifluoroethylenes ; Polymers ; Tubes ; ultra‐high barrier ; Water vapor ; Wearable technology</subject><ispartof>Advanced materials (Weinheim), 2024-11, Vol.36 (45), p.e2409910-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2580-32215f93bf9562b0d58b2b2ca1f79614fd334aa8a52c0c52f2c7dac1980499043</cites><orcidid>0000-0002-0305-6267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202409910$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202409910$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39258364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gong, Xiaocheng</creatorcontrib><creatorcontrib>Jiang, Haibo</creatorcontrib><creatorcontrib>Lu, Chenhao</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Long, Yao</creatorcontrib><creatorcontrib>Yang, Zhe</creatorcontrib><creatorcontrib>Sun, Shiqi</creatorcontrib><creatorcontrib>Chang, Yingfan</creatorcontrib><creatorcontrib>Ma, Longmei</creatorcontrib><creatorcontrib>Peng, Huisheng</creatorcontrib><creatorcontrib>Wang, Bingjie</creatorcontrib><title>Extending The Calendar Life of Fiber Lithium‐Ion Batteries to 200 Days with Ultra‐High Barrier Polymer Tubes</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Scalable fiber lithium‐ion batteries (FLIBs) have garnered significant attention due to huge potential applications in wearable technology. However, their widespread applications have been limited by inadequate cycle and calendar life, primarily due to the high permeability of the encapsulation layer to water vapor in ambient air. To address this challenge, an ultra‐high barrier composite tube is developed by blending polytrifluorochloroethylene (PCTFE) with organically modified montmorillonite (OMMT) for the continuous packaging of FLIBs. Due to the high crystallinity (≈40.21%) and small free volume (103.443 Å3), the PCTFE tube exhibited a low water vapor transmission rate (WVTR) of 0.123 mg day−1 pkg−1. Furthermore, through the melt extrusion, OMMT with its plate‐like morphology are fully exfoliated and dispersed within the PCTFE matrix. This created more complex pathways for water, increasing the diffusion path length and thereby reducing WVTR to 0.006 mg day−1 pkg−1. This innovation enabled an ultra‐long calendar life of 200 days and cycle life of 870 cycles for FLIBs, with over 80% capacity retention in ambient air. Additionally, 2%OMMT‐PCTFE‐FLIBs exhibited excellent flexibility, retaining an impressive 85.31% capacity after 10 000 bending cycles. This research presents a simple yet effective approach to enhance the lifetime and practicality of FLIBs through building a high‐performance polymer‐based encapsulation layer.
An ultra‐high barrier composite tube is developed by blending PCTFE with organically modified montmorillonite, resulting in an ultra‐low water vapor transmission rate of 0.006 mg day−1 pkg−1 due to the more complex and tortuous pathways for water permeation. The resulting 2%OMMT‐PCTFE‐FLIBs achieved an extended cycle life of 870 cycles and a calendar life of 200 days, with over 80% capacity retention.</description><subject>calendar life</subject><subject>Calendars</subject><subject>continuous preparation</subject><subject>Diffusion rate</subject><subject>Encapsulation</subject><subject>Extrusion rate</subject><subject>fiber electronic devices</subject><subject>Lithium-ion batteries</subject><subject>Montmorillonite</subject><subject>Polychlorotrifluoroethylenes</subject><subject>Polymers</subject><subject>Tubes</subject><subject>ultra‐high barrier</subject><subject>Water vapor</subject><subject>Wearable technology</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqF0ctqGzEUBmBRGhon7bbLIuimm3GPjqSxtHScKzi0C2c9aGakWGEujjRD4l0fIc-YJ4mMkxS66erww6efgw4hXxlMGQD-NHVrpggoQGsGH8iESWRZSvIjmYDmMtO5UIfkKMY7ANA55J_IIdcoFc_FhGzOHgfb1b67pau1pQvTpGQCXXpnae_ouS_tLg1rP7bPf56u-o6emGGwwdtIh54iAD0120gfkqE3zRBMYpf-dp1cSCrQ332zbdNcjaWNn8mBM020X17nMbk5P1stLrPlr4urxXyZVWk1yDgik07z0mmZYwm1VCWWWBnmZjpnwtWcC2OUkVhBJdFhNatNxbQCoTUIfkx-7Hs3ob8fbRyK1sfKNo3pbD_GgjNApVCJWaLf_6F3_Ri6tF1SKFKlyllS072qQh9jsK7YBN-asC0YFLtbFLtbFO-3SA--vdaOZWvrd_72-QnoPXjwjd3-p66Yn17P_5a_ABVnlUE</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Gong, Xiaocheng</creator><creator>Jiang, Haibo</creator><creator>Lu, Chenhao</creator><creator>Zhang, Kun</creator><creator>Long, Yao</creator><creator>Yang, Zhe</creator><creator>Sun, Shiqi</creator><creator>Chang, Yingfan</creator><creator>Ma, Longmei</creator><creator>Peng, Huisheng</creator><creator>Wang, Bingjie</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0305-6267</orcidid></search><sort><creationdate>20241101</creationdate><title>Extending The Calendar Life of Fiber Lithium‐Ion Batteries to 200 Days with Ultra‐High Barrier Polymer Tubes</title><author>Gong, Xiaocheng ; Jiang, Haibo ; Lu, Chenhao ; Zhang, Kun ; Long, Yao ; Yang, Zhe ; Sun, Shiqi ; Chang, Yingfan ; Ma, Longmei ; Peng, Huisheng ; Wang, Bingjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2580-32215f93bf9562b0d58b2b2ca1f79614fd334aa8a52c0c52f2c7dac1980499043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>calendar life</topic><topic>Calendars</topic><topic>continuous preparation</topic><topic>Diffusion rate</topic><topic>Encapsulation</topic><topic>Extrusion rate</topic><topic>fiber electronic devices</topic><topic>Lithium-ion batteries</topic><topic>Montmorillonite</topic><topic>Polychlorotrifluoroethylenes</topic><topic>Polymers</topic><topic>Tubes</topic><topic>ultra‐high barrier</topic><topic>Water vapor</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Xiaocheng</creatorcontrib><creatorcontrib>Jiang, Haibo</creatorcontrib><creatorcontrib>Lu, Chenhao</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Long, Yao</creatorcontrib><creatorcontrib>Yang, Zhe</creatorcontrib><creatorcontrib>Sun, Shiqi</creatorcontrib><creatorcontrib>Chang, Yingfan</creatorcontrib><creatorcontrib>Ma, Longmei</creatorcontrib><creatorcontrib>Peng, Huisheng</creatorcontrib><creatorcontrib>Wang, Bingjie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Xiaocheng</au><au>Jiang, Haibo</au><au>Lu, Chenhao</au><au>Zhang, Kun</au><au>Long, Yao</au><au>Yang, Zhe</au><au>Sun, Shiqi</au><au>Chang, Yingfan</au><au>Ma, Longmei</au><au>Peng, Huisheng</au><au>Wang, Bingjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extending The Calendar Life of Fiber Lithium‐Ion Batteries to 200 Days with Ultra‐High Barrier Polymer Tubes</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>36</volume><issue>45</issue><spage>e2409910</spage><epage>n/a</epage><pages>e2409910-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Scalable fiber lithium‐ion batteries (FLIBs) have garnered significant attention due to huge potential applications in wearable technology. However, their widespread applications have been limited by inadequate cycle and calendar life, primarily due to the high permeability of the encapsulation layer to water vapor in ambient air. To address this challenge, an ultra‐high barrier composite tube is developed by blending polytrifluorochloroethylene (PCTFE) with organically modified montmorillonite (OMMT) for the continuous packaging of FLIBs. Due to the high crystallinity (≈40.21%) and small free volume (103.443 Å3), the PCTFE tube exhibited a low water vapor transmission rate (WVTR) of 0.123 mg day−1 pkg−1. Furthermore, through the melt extrusion, OMMT with its plate‐like morphology are fully exfoliated and dispersed within the PCTFE matrix. This created more complex pathways for water, increasing the diffusion path length and thereby reducing WVTR to 0.006 mg day−1 pkg−1. This innovation enabled an ultra‐long calendar life of 200 days and cycle life of 870 cycles for FLIBs, with over 80% capacity retention in ambient air. Additionally, 2%OMMT‐PCTFE‐FLIBs exhibited excellent flexibility, retaining an impressive 85.31% capacity after 10 000 bending cycles. This research presents a simple yet effective approach to enhance the lifetime and practicality of FLIBs through building a high‐performance polymer‐based encapsulation layer.
An ultra‐high barrier composite tube is developed by blending PCTFE with organically modified montmorillonite, resulting in an ultra‐low water vapor transmission rate of 0.006 mg day−1 pkg−1 due to the more complex and tortuous pathways for water permeation. The resulting 2%OMMT‐PCTFE‐FLIBs achieved an extended cycle life of 870 cycles and a calendar life of 200 days, with over 80% capacity retention.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39258364</pmid><doi>10.1002/adma.202409910</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0305-6267</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-11, Vol.36 (45), p.e2409910-n/a |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_3102882847 |
source | Access via Wiley Online Library |
subjects | calendar life Calendars continuous preparation Diffusion rate Encapsulation Extrusion rate fiber electronic devices Lithium-ion batteries Montmorillonite Polychlorotrifluoroethylenes Polymers Tubes ultra‐high barrier Water vapor Wearable technology |
title | Extending The Calendar Life of Fiber Lithium‐Ion Batteries to 200 Days with Ultra‐High Barrier Polymer Tubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extending%20The%20Calendar%20Life%20of%20Fiber%20Lithium%E2%80%90Ion%20Batteries%20to%20200%20Days%20with%20Ultra%E2%80%90High%20Barrier%20Polymer%20Tubes&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Gong,%20Xiaocheng&rft.date=2024-11-01&rft.volume=36&rft.issue=45&rft.spage=e2409910&rft.epage=n/a&rft.pages=e2409910-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202409910&rft_dat=%3Cproquest_cross%3E3102882847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124980861&rft_id=info:pmid/39258364&rfr_iscdi=true |