Concurrent control chart pattern recognition in manufacturing processes based on zero-shot learning
In real industrial settings, collecting and labeling concurrent abnormal control chart pattern (CCP) samples are challenging, thereby hindering the effectiveness of current CCP recognition (CCPR) methods. This paper introduces zero-shot learning into quality control, proposing an intelligent model f...
Gespeichert in:
Veröffentlicht in: | ISA transactions 2024-11, Vol.154, p.228-241 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 241 |
---|---|
container_issue | |
container_start_page | 228 |
container_title | ISA transactions |
container_volume | 154 |
creator | Li, Yazhou Dai, Wei Yu, Shuang He, Yihai |
description | In real industrial settings, collecting and labeling concurrent abnormal control chart pattern (CCP) samples are challenging, thereby hindering the effectiveness of current CCP recognition (CCPR) methods. This paper introduces zero-shot learning into quality control, proposing an intelligent model for recognizing zero-shot concurrent CCPs (C-CCPs). A multiscale ordinal pattern (OP) feature considering data sequential relationship is proposed. Drawing from expert knowledge, an attribute description space (ADS) is established to infer from single CCPs to C-CCPs. An ADS is embedded between features and labels, and the attribute classifier associates the features and attributes of CCPs. Experimental results demonstrate an accuracy of 98.73 % for 11 unseen C-CCPs and an overall accuracy of 98.89 % for all 19 CCPs, without C-CCP samples in training. Compared with other features, the multiscale OP feature has the best recognition effect on unseen C-CCPs.
•Proposed a zero-shot learning framework for concurrent control chart pattern recognition of manufacturing process.•Established an attribute description space to represent semantic relationships among different CCPs.•Proposed an inference model for unseen concurrent CCPs based on attribute transfer.•Established a mapping between multi-scale OP features and CCP attributes.•GZSL-CCPR model achieved a recognition accuracy of 98.89 % for up to 19 types of CCPs. |
doi_str_mv | 10.1016/j.isatra.2024.09.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3102878781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057824004221</els_id><sourcerecordid>3102878781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-5f9c03572b76a6415a774407749721bf4613abb1082f185429b2f225a68ee3f73</originalsourceid><addsrcrecordid>eNp9kE1LAzEQQIMotlb_gUiOXnZNspvN5iJI8QsKXvQcsulsm7JNapIV9NebUvUoAzMwvJlJHkKXlJSU0OZmU9qoU9AlI6wuiSwJoUdoSlshi9xix2iaO7IgXLQTdBbjhhDCuGxP0aSSjDeUsykyc-_MGAK4hI13KfgBm7UOCe90ShAcDmD8ytlkvcPW4a12Y69NGoN1K7wL3kCMEHGnIyxxZr4g-CKufcID6OAydY5Oej1EuPipM_T2cP86fyoWL4_P87tFYVhNU8F7aUjFBetEo5uaci1EXZOcpGC06-uGVrrrKGlZT1teM9mxnjGumxag6kU1Q9eHvflV7yPEpLY2GhgG7cCPUVWUsFbkoBmtD6gJPsYAvdoFu9XhU1Gi9nrVRh30qr1eRaTKMvPY1c-FsdvC8m_o12cGbg8A5H9-WAgqGgvOwNJmj0ktvf3_wjexiI43</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102878781</pqid></control><display><type>article</type><title>Concurrent control chart pattern recognition in manufacturing processes based on zero-shot learning</title><source>Access via ScienceDirect (Elsevier)</source><creator>Li, Yazhou ; Dai, Wei ; Yu, Shuang ; He, Yihai</creator><creatorcontrib>Li, Yazhou ; Dai, Wei ; Yu, Shuang ; He, Yihai</creatorcontrib><description>In real industrial settings, collecting and labeling concurrent abnormal control chart pattern (CCP) samples are challenging, thereby hindering the effectiveness of current CCP recognition (CCPR) methods. This paper introduces zero-shot learning into quality control, proposing an intelligent model for recognizing zero-shot concurrent CCPs (C-CCPs). A multiscale ordinal pattern (OP) feature considering data sequential relationship is proposed. Drawing from expert knowledge, an attribute description space (ADS) is established to infer from single CCPs to C-CCPs. An ADS is embedded between features and labels, and the attribute classifier associates the features and attributes of CCPs. Experimental results demonstrate an accuracy of 98.73 % for 11 unseen C-CCPs and an overall accuracy of 98.89 % for all 19 CCPs, without C-CCP samples in training. Compared with other features, the multiscale OP feature has the best recognition effect on unseen C-CCPs.
•Proposed a zero-shot learning framework for concurrent control chart pattern recognition of manufacturing process.•Established an attribute description space to represent semantic relationships among different CCPs.•Proposed an inference model for unseen concurrent CCPs based on attribute transfer.•Established a mapping between multi-scale OP features and CCP attributes.•GZSL-CCPR model achieved a recognition accuracy of 98.89 % for up to 19 types of CCPs.</description><identifier>ISSN: 0019-0578</identifier><identifier>ISSN: 1879-2022</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2024.09.001</identifier><identifier>PMID: 39256152</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Concurrent CCP ; Control chart pattern recognition ; Generalized ZSL ; Ordinal patterns ; Zero-shot learning</subject><ispartof>ISA transactions, 2024-11, Vol.154, p.228-241</ispartof><rights>2024 ISA</rights><rights>Copyright © 2024 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-5f9c03572b76a6415a774407749721bf4613abb1082f185429b2f225a68ee3f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.isatra.2024.09.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39256152$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yazhou</creatorcontrib><creatorcontrib>Dai, Wei</creatorcontrib><creatorcontrib>Yu, Shuang</creatorcontrib><creatorcontrib>He, Yihai</creatorcontrib><title>Concurrent control chart pattern recognition in manufacturing processes based on zero-shot learning</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>In real industrial settings, collecting and labeling concurrent abnormal control chart pattern (CCP) samples are challenging, thereby hindering the effectiveness of current CCP recognition (CCPR) methods. This paper introduces zero-shot learning into quality control, proposing an intelligent model for recognizing zero-shot concurrent CCPs (C-CCPs). A multiscale ordinal pattern (OP) feature considering data sequential relationship is proposed. Drawing from expert knowledge, an attribute description space (ADS) is established to infer from single CCPs to C-CCPs. An ADS is embedded between features and labels, and the attribute classifier associates the features and attributes of CCPs. Experimental results demonstrate an accuracy of 98.73 % for 11 unseen C-CCPs and an overall accuracy of 98.89 % for all 19 CCPs, without C-CCP samples in training. Compared with other features, the multiscale OP feature has the best recognition effect on unseen C-CCPs.
•Proposed a zero-shot learning framework for concurrent control chart pattern recognition of manufacturing process.•Established an attribute description space to represent semantic relationships among different CCPs.•Proposed an inference model for unseen concurrent CCPs based on attribute transfer.•Established a mapping between multi-scale OP features and CCP attributes.•GZSL-CCPR model achieved a recognition accuracy of 98.89 % for up to 19 types of CCPs.</description><subject>Concurrent CCP</subject><subject>Control chart pattern recognition</subject><subject>Generalized ZSL</subject><subject>Ordinal patterns</subject><subject>Zero-shot learning</subject><issn>0019-0578</issn><issn>1879-2022</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQQIMotlb_gUiOXnZNspvN5iJI8QsKXvQcsulsm7JNapIV9NebUvUoAzMwvJlJHkKXlJSU0OZmU9qoU9AlI6wuiSwJoUdoSlshi9xix2iaO7IgXLQTdBbjhhDCuGxP0aSSjDeUsykyc-_MGAK4hI13KfgBm7UOCe90ShAcDmD8ytlkvcPW4a12Y69NGoN1K7wL3kCMEHGnIyxxZr4g-CKufcID6OAydY5Oej1EuPipM_T2cP86fyoWL4_P87tFYVhNU8F7aUjFBetEo5uaci1EXZOcpGC06-uGVrrrKGlZT1teM9mxnjGumxag6kU1Q9eHvflV7yPEpLY2GhgG7cCPUVWUsFbkoBmtD6gJPsYAvdoFu9XhU1Gi9nrVRh30qr1eRaTKMvPY1c-FsdvC8m_o12cGbg8A5H9-WAgqGgvOwNJmj0ktvf3_wjexiI43</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Li, Yazhou</creator><creator>Dai, Wei</creator><creator>Yu, Shuang</creator><creator>He, Yihai</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202411</creationdate><title>Concurrent control chart pattern recognition in manufacturing processes based on zero-shot learning</title><author>Li, Yazhou ; Dai, Wei ; Yu, Shuang ; He, Yihai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-5f9c03572b76a6415a774407749721bf4613abb1082f185429b2f225a68ee3f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Concurrent CCP</topic><topic>Control chart pattern recognition</topic><topic>Generalized ZSL</topic><topic>Ordinal patterns</topic><topic>Zero-shot learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yazhou</creatorcontrib><creatorcontrib>Dai, Wei</creatorcontrib><creatorcontrib>Yu, Shuang</creatorcontrib><creatorcontrib>He, Yihai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yazhou</au><au>Dai, Wei</au><au>Yu, Shuang</au><au>He, Yihai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concurrent control chart pattern recognition in manufacturing processes based on zero-shot learning</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2024-11</date><risdate>2024</risdate><volume>154</volume><spage>228</spage><epage>241</epage><pages>228-241</pages><issn>0019-0578</issn><issn>1879-2022</issn><eissn>1879-2022</eissn><abstract>In real industrial settings, collecting and labeling concurrent abnormal control chart pattern (CCP) samples are challenging, thereby hindering the effectiveness of current CCP recognition (CCPR) methods. This paper introduces zero-shot learning into quality control, proposing an intelligent model for recognizing zero-shot concurrent CCPs (C-CCPs). A multiscale ordinal pattern (OP) feature considering data sequential relationship is proposed. Drawing from expert knowledge, an attribute description space (ADS) is established to infer from single CCPs to C-CCPs. An ADS is embedded between features and labels, and the attribute classifier associates the features and attributes of CCPs. Experimental results demonstrate an accuracy of 98.73 % for 11 unseen C-CCPs and an overall accuracy of 98.89 % for all 19 CCPs, without C-CCP samples in training. Compared with other features, the multiscale OP feature has the best recognition effect on unseen C-CCPs.
•Proposed a zero-shot learning framework for concurrent control chart pattern recognition of manufacturing process.•Established an attribute description space to represent semantic relationships among different CCPs.•Proposed an inference model for unseen concurrent CCPs based on attribute transfer.•Established a mapping between multi-scale OP features and CCP attributes.•GZSL-CCPR model achieved a recognition accuracy of 98.89 % for up to 19 types of CCPs.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>39256152</pmid><doi>10.1016/j.isatra.2024.09.001</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-0578 |
ispartof | ISA transactions, 2024-11, Vol.154, p.228-241 |
issn | 0019-0578 1879-2022 1879-2022 |
language | eng |
recordid | cdi_proquest_miscellaneous_3102878781 |
source | Access via ScienceDirect (Elsevier) |
subjects | Concurrent CCP Control chart pattern recognition Generalized ZSL Ordinal patterns Zero-shot learning |
title | Concurrent control chart pattern recognition in manufacturing processes based on zero-shot learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A00%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concurrent%20control%20chart%20pattern%20recognition%20in%20manufacturing%20processes%20based%20on%20zero-shot%20learning&rft.jtitle=ISA%20transactions&rft.au=Li,%20Yazhou&rft.date=2024-11&rft.volume=154&rft.spage=228&rft.epage=241&rft.pages=228-241&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2024.09.001&rft_dat=%3Cproquest_cross%3E3102878781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102878781&rft_id=info:pmid/39256152&rft_els_id=S0019057824004221&rfr_iscdi=true |