Subject-level spinal osteoporotic fracture prediction combining deep learning vertebral outputs and limited demographic data
Summary Automated screening for vertebral fractures could improve outcomes. We achieved an AUC-ROC = 0.968 for the prediction of moderate to severe fracture using a GAM with age and three maximal vertebral body scores of fracture from a convolutional neural network. Maximal fracture scores resulted...
Gespeichert in:
Veröffentlicht in: | Archives of osteoporosis 2024-09, Vol.19 (1), p.87, Article 87 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 87 |
container_title | Archives of osteoporosis |
container_volume | 19 |
creator | Cross, Nathan M. Perry, Jessica Dong, Qifei Luo, Gang Renslo, Jonathan Chang, Brian C. Lane, Nancy E. Marshall, Lynn Johnston, Sandra K. Haynor, David R. Jarvik, Jeffrey G. Heagerty, Patrick J. |
description | Summary
Automated screening for vertebral fractures could improve outcomes. We achieved an AUC-ROC = 0.968 for the prediction of moderate to severe fracture using a GAM with age and three maximal vertebral body scores of fracture from a convolutional neural network. Maximal fracture scores resulted in a performant model for subject-level fracture prediction. Combining individual deep learning vertebral body fracture scores and demographic covariates for subject-level classification of osteoporotic fracture achieved excellent performance (AUC-ROC of 0.968) on a large dataset of radiographs with basic demographic data.
Purpose
Osteoporotic vertebral fractures are common and morbid. Automated opportunistic screening for incidental vertebral fractures from radiographs, the highest volume imaging modality, could improve osteoporosis detection and management. We consider how to form patient-level fracture predictions and summarization to guide management, using our previously developed vertebral fracture classifier on segmented radiographs from a prospective cohort study of US men (MrOS). We compare the performance of logistic regression (LR) and generalized additive models (GAM) with combinations of individual vertebral scores and basic demographic covariates.
Methods
Subject-level LR and GAM models were created retrospectively using all fracture predictions or summary variables such as order statistics, adjacent vertebral interactions, and demographic covariates (age, race/ethnicity). The classifier outputs for 8663 vertebrae from 1176 thoracic and lumbar radiographs in 669 subjects were divided by subject to perform stratified fivefold cross-validation. Models were assessed using multiple metrics, including receiver operating characteristic (ROC) and precision-recall (PR) curves.
Results
The best model (AUC-ROC = 0.968) was a GAM using the top three maximum vertebral fracture scores and age. Using top-ranked scores only, rather than all vertebral scores, improved performance for both model classes. Adding age, but not ethnicity, to the GAMs improved performance slightly.
Conclusion
Maximal vertebral fracture scores resulted in the highest-performing models. While combining multiple vertebral body predictions risks decreasing specificity, our results demonstrate that subject-level models maintain good predictive performance. Thresholding strategies can be used to control sensitivity and specificity as clinically appropriate. |
doi_str_mv | 10.1007/s11657-024-01433-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3102878364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102878364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-22274d702135b29cf2051d166b612331356c3fd07f0f5e0356224bfd0bbe49763</originalsourceid><addsrcrecordid>eNp9kEtP3DAURq0KVGDgD7CovOwm1L5OnJklQqUgIXUBrC0_bgaPkji1HaSi_vh6HlRdsbqv757FIeSSsyvOWPstcS6btmJQV4zXQlRvn8gpX0qoRMPro__6E3KW0oYxyXgjP5MTsYJGAuen5M_jbDZoc9XjK_Y0TX7UPQ0pY5hCDNlb2kVt8xyRThGdt9mHkdowGD_6cU0d4kR71HE3vWLMaOIWMedpzonq0dHeDz6jK9khrKOeXgrV6azPyXGn-4QXh7ogz7ffn27uqoefP-5vrh8qC7DMFQC0tWsZcNEYWNkOWMMdl9JIDkKUrbSic6ztWNcgKyNAbcrCGKxXrRQL8nXPnWL4NWPKavDJYt_rEcOclOAMlu1SyLpEYR-1MaQUsVNT9IOOvxVnamtd7a2rYl3trKu38vTlwJ_NgO7fy7vmEhD7QCqncY1RbcIci-n0EfYv84iP3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102878364</pqid></control><display><type>article</type><title>Subject-level spinal osteoporotic fracture prediction combining deep learning vertebral outputs and limited demographic data</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Cross, Nathan M. ; Perry, Jessica ; Dong, Qifei ; Luo, Gang ; Renslo, Jonathan ; Chang, Brian C. ; Lane, Nancy E. ; Marshall, Lynn ; Johnston, Sandra K. ; Haynor, David R. ; Jarvik, Jeffrey G. ; Heagerty, Patrick J.</creator><creatorcontrib>Cross, Nathan M. ; Perry, Jessica ; Dong, Qifei ; Luo, Gang ; Renslo, Jonathan ; Chang, Brian C. ; Lane, Nancy E. ; Marshall, Lynn ; Johnston, Sandra K. ; Haynor, David R. ; Jarvik, Jeffrey G. ; Heagerty, Patrick J.</creatorcontrib><description>Summary
Automated screening for vertebral fractures could improve outcomes. We achieved an AUC-ROC = 0.968 for the prediction of moderate to severe fracture using a GAM with age and three maximal vertebral body scores of fracture from a convolutional neural network. Maximal fracture scores resulted in a performant model for subject-level fracture prediction. Combining individual deep learning vertebral body fracture scores and demographic covariates for subject-level classification of osteoporotic fracture achieved excellent performance (AUC-ROC of 0.968) on a large dataset of radiographs with basic demographic data.
Purpose
Osteoporotic vertebral fractures are common and morbid. Automated opportunistic screening for incidental vertebral fractures from radiographs, the highest volume imaging modality, could improve osteoporosis detection and management. We consider how to form patient-level fracture predictions and summarization to guide management, using our previously developed vertebral fracture classifier on segmented radiographs from a prospective cohort study of US men (MrOS). We compare the performance of logistic regression (LR) and generalized additive models (GAM) with combinations of individual vertebral scores and basic demographic covariates.
Methods
Subject-level LR and GAM models were created retrospectively using all fracture predictions or summary variables such as order statistics, adjacent vertebral interactions, and demographic covariates (age, race/ethnicity). The classifier outputs for 8663 vertebrae from 1176 thoracic and lumbar radiographs in 669 subjects were divided by subject to perform stratified fivefold cross-validation. Models were assessed using multiple metrics, including receiver operating characteristic (ROC) and precision-recall (PR) curves.
Results
The best model (AUC-ROC = 0.968) was a GAM using the top three maximum vertebral fracture scores and age. Using top-ranked scores only, rather than all vertebral scores, improved performance for both model classes. Adding age, but not ethnicity, to the GAMs improved performance slightly.
Conclusion
Maximal vertebral fracture scores resulted in the highest-performing models. While combining multiple vertebral body predictions risks decreasing specificity, our results demonstrate that subject-level models maintain good predictive performance. Thresholding strategies can be used to control sensitivity and specificity as clinically appropriate.</description><identifier>ISSN: 1862-3514</identifier><identifier>EISSN: 1862-3514</identifier><identifier>DOI: 10.1007/s11657-024-01433-z</identifier><identifier>PMID: 39256211</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Aged ; Aged, 80 and over ; Deep Learning ; Endocrinology ; Humans ; Logistic Models ; Lumbar Vertebrae - diagnostic imaging ; Lumbar Vertebrae - injuries ; Male ; Medicine ; Medicine & Public Health ; Middle Aged ; Original Article ; Orthopedics ; Osteoporotic Fractures - diagnostic imaging ; Osteoporotic Fractures - epidemiology ; Retrospective Studies ; ROC Curve ; Spinal Fractures - diagnostic imaging ; Spinal Fractures - epidemiology</subject><ispartof>Archives of osteoporosis, 2024-09, Vol.19 (1), p.87, Article 87</ispartof><rights>International Osteoporosis Foundation and Bone Health and Osteoporosis Foundation 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. International Osteoporosis Foundation and Bone Health and Osteoporosis Foundation.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-22274d702135b29cf2051d166b612331356c3fd07f0f5e0356224bfd0bbe49763</cites><orcidid>0000-0002-5040-4340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11657-024-01433-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11657-024-01433-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39256211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cross, Nathan M.</creatorcontrib><creatorcontrib>Perry, Jessica</creatorcontrib><creatorcontrib>Dong, Qifei</creatorcontrib><creatorcontrib>Luo, Gang</creatorcontrib><creatorcontrib>Renslo, Jonathan</creatorcontrib><creatorcontrib>Chang, Brian C.</creatorcontrib><creatorcontrib>Lane, Nancy E.</creatorcontrib><creatorcontrib>Marshall, Lynn</creatorcontrib><creatorcontrib>Johnston, Sandra K.</creatorcontrib><creatorcontrib>Haynor, David R.</creatorcontrib><creatorcontrib>Jarvik, Jeffrey G.</creatorcontrib><creatorcontrib>Heagerty, Patrick J.</creatorcontrib><title>Subject-level spinal osteoporotic fracture prediction combining deep learning vertebral outputs and limited demographic data</title><title>Archives of osteoporosis</title><addtitle>Arch Osteoporos</addtitle><addtitle>Arch Osteoporos</addtitle><description>Summary
Automated screening for vertebral fractures could improve outcomes. We achieved an AUC-ROC = 0.968 for the prediction of moderate to severe fracture using a GAM with age and three maximal vertebral body scores of fracture from a convolutional neural network. Maximal fracture scores resulted in a performant model for subject-level fracture prediction. Combining individual deep learning vertebral body fracture scores and demographic covariates for subject-level classification of osteoporotic fracture achieved excellent performance (AUC-ROC of 0.968) on a large dataset of radiographs with basic demographic data.
Purpose
Osteoporotic vertebral fractures are common and morbid. Automated opportunistic screening for incidental vertebral fractures from radiographs, the highest volume imaging modality, could improve osteoporosis detection and management. We consider how to form patient-level fracture predictions and summarization to guide management, using our previously developed vertebral fracture classifier on segmented radiographs from a prospective cohort study of US men (MrOS). We compare the performance of logistic regression (LR) and generalized additive models (GAM) with combinations of individual vertebral scores and basic demographic covariates.
Methods
Subject-level LR and GAM models were created retrospectively using all fracture predictions or summary variables such as order statistics, adjacent vertebral interactions, and demographic covariates (age, race/ethnicity). The classifier outputs for 8663 vertebrae from 1176 thoracic and lumbar radiographs in 669 subjects were divided by subject to perform stratified fivefold cross-validation. Models were assessed using multiple metrics, including receiver operating characteristic (ROC) and precision-recall (PR) curves.
Results
The best model (AUC-ROC = 0.968) was a GAM using the top three maximum vertebral fracture scores and age. Using top-ranked scores only, rather than all vertebral scores, improved performance for both model classes. Adding age, but not ethnicity, to the GAMs improved performance slightly.
Conclusion
Maximal vertebral fracture scores resulted in the highest-performing models. While combining multiple vertebral body predictions risks decreasing specificity, our results demonstrate that subject-level models maintain good predictive performance. Thresholding strategies can be used to control sensitivity and specificity as clinically appropriate.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Deep Learning</subject><subject>Endocrinology</subject><subject>Humans</subject><subject>Logistic Models</subject><subject>Lumbar Vertebrae - diagnostic imaging</subject><subject>Lumbar Vertebrae - injuries</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Middle Aged</subject><subject>Original Article</subject><subject>Orthopedics</subject><subject>Osteoporotic Fractures - diagnostic imaging</subject><subject>Osteoporotic Fractures - epidemiology</subject><subject>Retrospective Studies</subject><subject>ROC Curve</subject><subject>Spinal Fractures - diagnostic imaging</subject><subject>Spinal Fractures - epidemiology</subject><issn>1862-3514</issn><issn>1862-3514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtP3DAURq0KVGDgD7CovOwm1L5OnJklQqUgIXUBrC0_bgaPkji1HaSi_vh6HlRdsbqv757FIeSSsyvOWPstcS6btmJQV4zXQlRvn8gpX0qoRMPro__6E3KW0oYxyXgjP5MTsYJGAuen5M_jbDZoc9XjK_Y0TX7UPQ0pY5hCDNlb2kVt8xyRThGdt9mHkdowGD_6cU0d4kR71HE3vWLMaOIWMedpzonq0dHeDz6jK9khrKOeXgrV6azPyXGn-4QXh7ogz7ffn27uqoefP-5vrh8qC7DMFQC0tWsZcNEYWNkOWMMdl9JIDkKUrbSic6ztWNcgKyNAbcrCGKxXrRQL8nXPnWL4NWPKavDJYt_rEcOclOAMlu1SyLpEYR-1MaQUsVNT9IOOvxVnamtd7a2rYl3trKu38vTlwJ_NgO7fy7vmEhD7QCqncY1RbcIci-n0EfYv84iP3w</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>Cross, Nathan M.</creator><creator>Perry, Jessica</creator><creator>Dong, Qifei</creator><creator>Luo, Gang</creator><creator>Renslo, Jonathan</creator><creator>Chang, Brian C.</creator><creator>Lane, Nancy E.</creator><creator>Marshall, Lynn</creator><creator>Johnston, Sandra K.</creator><creator>Haynor, David R.</creator><creator>Jarvik, Jeffrey G.</creator><creator>Heagerty, Patrick J.</creator><general>Springer London</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5040-4340</orcidid></search><sort><creationdate>20240910</creationdate><title>Subject-level spinal osteoporotic fracture prediction combining deep learning vertebral outputs and limited demographic data</title><author>Cross, Nathan M. ; Perry, Jessica ; Dong, Qifei ; Luo, Gang ; Renslo, Jonathan ; Chang, Brian C. ; Lane, Nancy E. ; Marshall, Lynn ; Johnston, Sandra K. ; Haynor, David R. ; Jarvik, Jeffrey G. ; Heagerty, Patrick J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-22274d702135b29cf2051d166b612331356c3fd07f0f5e0356224bfd0bbe49763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Deep Learning</topic><topic>Endocrinology</topic><topic>Humans</topic><topic>Logistic Models</topic><topic>Lumbar Vertebrae - diagnostic imaging</topic><topic>Lumbar Vertebrae - injuries</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Middle Aged</topic><topic>Original Article</topic><topic>Orthopedics</topic><topic>Osteoporotic Fractures - diagnostic imaging</topic><topic>Osteoporotic Fractures - epidemiology</topic><topic>Retrospective Studies</topic><topic>ROC Curve</topic><topic>Spinal Fractures - diagnostic imaging</topic><topic>Spinal Fractures - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cross, Nathan M.</creatorcontrib><creatorcontrib>Perry, Jessica</creatorcontrib><creatorcontrib>Dong, Qifei</creatorcontrib><creatorcontrib>Luo, Gang</creatorcontrib><creatorcontrib>Renslo, Jonathan</creatorcontrib><creatorcontrib>Chang, Brian C.</creatorcontrib><creatorcontrib>Lane, Nancy E.</creatorcontrib><creatorcontrib>Marshall, Lynn</creatorcontrib><creatorcontrib>Johnston, Sandra K.</creatorcontrib><creatorcontrib>Haynor, David R.</creatorcontrib><creatorcontrib>Jarvik, Jeffrey G.</creatorcontrib><creatorcontrib>Heagerty, Patrick J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Archives of osteoporosis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cross, Nathan M.</au><au>Perry, Jessica</au><au>Dong, Qifei</au><au>Luo, Gang</au><au>Renslo, Jonathan</au><au>Chang, Brian C.</au><au>Lane, Nancy E.</au><au>Marshall, Lynn</au><au>Johnston, Sandra K.</au><au>Haynor, David R.</au><au>Jarvik, Jeffrey G.</au><au>Heagerty, Patrick J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subject-level spinal osteoporotic fracture prediction combining deep learning vertebral outputs and limited demographic data</atitle><jtitle>Archives of osteoporosis</jtitle><stitle>Arch Osteoporos</stitle><addtitle>Arch Osteoporos</addtitle><date>2024-09-10</date><risdate>2024</risdate><volume>19</volume><issue>1</issue><spage>87</spage><pages>87-</pages><artnum>87</artnum><issn>1862-3514</issn><eissn>1862-3514</eissn><abstract>Summary
Automated screening for vertebral fractures could improve outcomes. We achieved an AUC-ROC = 0.968 for the prediction of moderate to severe fracture using a GAM with age and three maximal vertebral body scores of fracture from a convolutional neural network. Maximal fracture scores resulted in a performant model for subject-level fracture prediction. Combining individual deep learning vertebral body fracture scores and demographic covariates for subject-level classification of osteoporotic fracture achieved excellent performance (AUC-ROC of 0.968) on a large dataset of radiographs with basic demographic data.
Purpose
Osteoporotic vertebral fractures are common and morbid. Automated opportunistic screening for incidental vertebral fractures from radiographs, the highest volume imaging modality, could improve osteoporosis detection and management. We consider how to form patient-level fracture predictions and summarization to guide management, using our previously developed vertebral fracture classifier on segmented radiographs from a prospective cohort study of US men (MrOS). We compare the performance of logistic regression (LR) and generalized additive models (GAM) with combinations of individual vertebral scores and basic demographic covariates.
Methods
Subject-level LR and GAM models were created retrospectively using all fracture predictions or summary variables such as order statistics, adjacent vertebral interactions, and demographic covariates (age, race/ethnicity). The classifier outputs for 8663 vertebrae from 1176 thoracic and lumbar radiographs in 669 subjects were divided by subject to perform stratified fivefold cross-validation. Models were assessed using multiple metrics, including receiver operating characteristic (ROC) and precision-recall (PR) curves.
Results
The best model (AUC-ROC = 0.968) was a GAM using the top three maximum vertebral fracture scores and age. Using top-ranked scores only, rather than all vertebral scores, improved performance for both model classes. Adding age, but not ethnicity, to the GAMs improved performance slightly.
Conclusion
Maximal vertebral fracture scores resulted in the highest-performing models. While combining multiple vertebral body predictions risks decreasing specificity, our results demonstrate that subject-level models maintain good predictive performance. Thresholding strategies can be used to control sensitivity and specificity as clinically appropriate.</abstract><cop>London</cop><pub>Springer London</pub><pmid>39256211</pmid><doi>10.1007/s11657-024-01433-z</doi><orcidid>https://orcid.org/0000-0002-5040-4340</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-3514 |
ispartof | Archives of osteoporosis, 2024-09, Vol.19 (1), p.87, Article 87 |
issn | 1862-3514 1862-3514 |
language | eng |
recordid | cdi_proquest_miscellaneous_3102878364 |
source | MEDLINE; SpringerNature Journals |
subjects | Aged Aged, 80 and over Deep Learning Endocrinology Humans Logistic Models Lumbar Vertebrae - diagnostic imaging Lumbar Vertebrae - injuries Male Medicine Medicine & Public Health Middle Aged Original Article Orthopedics Osteoporotic Fractures - diagnostic imaging Osteoporotic Fractures - epidemiology Retrospective Studies ROC Curve Spinal Fractures - diagnostic imaging Spinal Fractures - epidemiology |
title | Subject-level spinal osteoporotic fracture prediction combining deep learning vertebral outputs and limited demographic data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T16%3A19%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subject-level%20spinal%20osteoporotic%20fracture%20prediction%20combining%20deep%20learning%20vertebral%20outputs%20and%20limited%20demographic%20data&rft.jtitle=Archives%20of%20osteoporosis&rft.au=Cross,%20Nathan%20M.&rft.date=2024-09-10&rft.volume=19&rft.issue=1&rft.spage=87&rft.pages=87-&rft.artnum=87&rft.issn=1862-3514&rft.eissn=1862-3514&rft_id=info:doi/10.1007/s11657-024-01433-z&rft_dat=%3Cproquest_cross%3E3102878364%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102878364&rft_id=info:pmid/39256211&rfr_iscdi=true |