Subject-level spinal osteoporotic fracture prediction combining deep learning vertebral outputs and limited demographic data

Summary Automated screening for vertebral fractures could improve outcomes. We achieved an AUC-ROC = 0.968 for the prediction of moderate to severe fracture using a GAM with age and three maximal vertebral body scores of fracture from a convolutional neural network. Maximal fracture scores resulted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of osteoporosis 2024-09, Vol.19 (1), p.87, Article 87
Hauptverfasser: Cross, Nathan M., Perry, Jessica, Dong, Qifei, Luo, Gang, Renslo, Jonathan, Chang, Brian C., Lane, Nancy E., Marshall, Lynn, Johnston, Sandra K., Haynor, David R., Jarvik, Jeffrey G., Heagerty, Patrick J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 87
container_title Archives of osteoporosis
container_volume 19
creator Cross, Nathan M.
Perry, Jessica
Dong, Qifei
Luo, Gang
Renslo, Jonathan
Chang, Brian C.
Lane, Nancy E.
Marshall, Lynn
Johnston, Sandra K.
Haynor, David R.
Jarvik, Jeffrey G.
Heagerty, Patrick J.
description Summary Automated screening for vertebral fractures could improve outcomes. We achieved an AUC-ROC = 0.968 for the prediction of moderate to severe fracture using a GAM with age and three maximal vertebral body scores of fracture from a convolutional neural network. Maximal fracture scores resulted in a performant model for subject-level fracture prediction. Combining individual deep learning vertebral body fracture scores and demographic covariates for subject-level classification of osteoporotic fracture achieved excellent performance (AUC-ROC of 0.968) on a large dataset of radiographs with basic demographic data. Purpose Osteoporotic vertebral fractures are common and morbid. Automated opportunistic screening for incidental vertebral fractures from radiographs, the highest volume imaging modality, could improve osteoporosis detection and management. We consider how to form patient-level fracture predictions and summarization to guide management, using our previously developed vertebral fracture classifier on segmented radiographs from a prospective cohort study of US men (MrOS). We compare the performance of logistic regression (LR) and generalized additive models (GAM) with combinations of individual vertebral scores and basic demographic covariates. Methods Subject-level LR and GAM models were created retrospectively using all fracture predictions or summary variables such as order statistics, adjacent vertebral interactions, and demographic covariates (age, race/ethnicity). The classifier outputs for 8663 vertebrae from 1176 thoracic and lumbar radiographs in 669 subjects were divided by subject to perform stratified fivefold cross-validation. Models were assessed using multiple metrics, including receiver operating characteristic (ROC) and precision-recall (PR) curves. Results The best model (AUC-ROC = 0.968) was a GAM using the top three maximum vertebral fracture scores and age. Using top-ranked scores only, rather than all vertebral scores, improved performance for both model classes. Adding age, but not ethnicity, to the GAMs improved performance slightly. Conclusion Maximal vertebral fracture scores resulted in the highest-performing models. While combining multiple vertebral body predictions risks decreasing specificity, our results demonstrate that subject-level models maintain good predictive performance. Thresholding strategies can be used to control sensitivity and specificity as clinically appropriate.
doi_str_mv 10.1007/s11657-024-01433-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3102878364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102878364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-22274d702135b29cf2051d166b612331356c3fd07f0f5e0356224bfd0bbe49763</originalsourceid><addsrcrecordid>eNp9kEtP3DAURq0KVGDgD7CovOwm1L5OnJklQqUgIXUBrC0_bgaPkji1HaSi_vh6HlRdsbqv757FIeSSsyvOWPstcS6btmJQV4zXQlRvn8gpX0qoRMPro__6E3KW0oYxyXgjP5MTsYJGAuen5M_jbDZoc9XjK_Y0TX7UPQ0pY5hCDNlb2kVt8xyRThGdt9mHkdowGD_6cU0d4kR71HE3vWLMaOIWMedpzonq0dHeDz6jK9khrKOeXgrV6azPyXGn-4QXh7ogz7ffn27uqoefP-5vrh8qC7DMFQC0tWsZcNEYWNkOWMMdl9JIDkKUrbSic6ztWNcgKyNAbcrCGKxXrRQL8nXPnWL4NWPKavDJYt_rEcOclOAMlu1SyLpEYR-1MaQUsVNT9IOOvxVnamtd7a2rYl3trKu38vTlwJ_NgO7fy7vmEhD7QCqncY1RbcIci-n0EfYv84iP3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102878364</pqid></control><display><type>article</type><title>Subject-level spinal osteoporotic fracture prediction combining deep learning vertebral outputs and limited demographic data</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Cross, Nathan M. ; Perry, Jessica ; Dong, Qifei ; Luo, Gang ; Renslo, Jonathan ; Chang, Brian C. ; Lane, Nancy E. ; Marshall, Lynn ; Johnston, Sandra K. ; Haynor, David R. ; Jarvik, Jeffrey G. ; Heagerty, Patrick J.</creator><creatorcontrib>Cross, Nathan M. ; Perry, Jessica ; Dong, Qifei ; Luo, Gang ; Renslo, Jonathan ; Chang, Brian C. ; Lane, Nancy E. ; Marshall, Lynn ; Johnston, Sandra K. ; Haynor, David R. ; Jarvik, Jeffrey G. ; Heagerty, Patrick J.</creatorcontrib><description>Summary Automated screening for vertebral fractures could improve outcomes. We achieved an AUC-ROC = 0.968 for the prediction of moderate to severe fracture using a GAM with age and three maximal vertebral body scores of fracture from a convolutional neural network. Maximal fracture scores resulted in a performant model for subject-level fracture prediction. Combining individual deep learning vertebral body fracture scores and demographic covariates for subject-level classification of osteoporotic fracture achieved excellent performance (AUC-ROC of 0.968) on a large dataset of radiographs with basic demographic data. Purpose Osteoporotic vertebral fractures are common and morbid. Automated opportunistic screening for incidental vertebral fractures from radiographs, the highest volume imaging modality, could improve osteoporosis detection and management. We consider how to form patient-level fracture predictions and summarization to guide management, using our previously developed vertebral fracture classifier on segmented radiographs from a prospective cohort study of US men (MrOS). We compare the performance of logistic regression (LR) and generalized additive models (GAM) with combinations of individual vertebral scores and basic demographic covariates. Methods Subject-level LR and GAM models were created retrospectively using all fracture predictions or summary variables such as order statistics, adjacent vertebral interactions, and demographic covariates (age, race/ethnicity). The classifier outputs for 8663 vertebrae from 1176 thoracic and lumbar radiographs in 669 subjects were divided by subject to perform stratified fivefold cross-validation. Models were assessed using multiple metrics, including receiver operating characteristic (ROC) and precision-recall (PR) curves. Results The best model (AUC-ROC = 0.968) was a GAM using the top three maximum vertebral fracture scores and age. Using top-ranked scores only, rather than all vertebral scores, improved performance for both model classes. Adding age, but not ethnicity, to the GAMs improved performance slightly. Conclusion Maximal vertebral fracture scores resulted in the highest-performing models. While combining multiple vertebral body predictions risks decreasing specificity, our results demonstrate that subject-level models maintain good predictive performance. Thresholding strategies can be used to control sensitivity and specificity as clinically appropriate.</description><identifier>ISSN: 1862-3514</identifier><identifier>EISSN: 1862-3514</identifier><identifier>DOI: 10.1007/s11657-024-01433-z</identifier><identifier>PMID: 39256211</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Aged ; Aged, 80 and over ; Deep Learning ; Endocrinology ; Humans ; Logistic Models ; Lumbar Vertebrae - diagnostic imaging ; Lumbar Vertebrae - injuries ; Male ; Medicine ; Medicine &amp; Public Health ; Middle Aged ; Original Article ; Orthopedics ; Osteoporotic Fractures - diagnostic imaging ; Osteoporotic Fractures - epidemiology ; Retrospective Studies ; ROC Curve ; Spinal Fractures - diagnostic imaging ; Spinal Fractures - epidemiology</subject><ispartof>Archives of osteoporosis, 2024-09, Vol.19 (1), p.87, Article 87</ispartof><rights>International Osteoporosis Foundation and Bone Health and Osteoporosis Foundation 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. International Osteoporosis Foundation and Bone Health and Osteoporosis Foundation.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-22274d702135b29cf2051d166b612331356c3fd07f0f5e0356224bfd0bbe49763</cites><orcidid>0000-0002-5040-4340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11657-024-01433-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11657-024-01433-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39256211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cross, Nathan M.</creatorcontrib><creatorcontrib>Perry, Jessica</creatorcontrib><creatorcontrib>Dong, Qifei</creatorcontrib><creatorcontrib>Luo, Gang</creatorcontrib><creatorcontrib>Renslo, Jonathan</creatorcontrib><creatorcontrib>Chang, Brian C.</creatorcontrib><creatorcontrib>Lane, Nancy E.</creatorcontrib><creatorcontrib>Marshall, Lynn</creatorcontrib><creatorcontrib>Johnston, Sandra K.</creatorcontrib><creatorcontrib>Haynor, David R.</creatorcontrib><creatorcontrib>Jarvik, Jeffrey G.</creatorcontrib><creatorcontrib>Heagerty, Patrick J.</creatorcontrib><title>Subject-level spinal osteoporotic fracture prediction combining deep learning vertebral outputs and limited demographic data</title><title>Archives of osteoporosis</title><addtitle>Arch Osteoporos</addtitle><addtitle>Arch Osteoporos</addtitle><description>Summary Automated screening for vertebral fractures could improve outcomes. We achieved an AUC-ROC = 0.968 for the prediction of moderate to severe fracture using a GAM with age and three maximal vertebral body scores of fracture from a convolutional neural network. Maximal fracture scores resulted in a performant model for subject-level fracture prediction. Combining individual deep learning vertebral body fracture scores and demographic covariates for subject-level classification of osteoporotic fracture achieved excellent performance (AUC-ROC of 0.968) on a large dataset of radiographs with basic demographic data. Purpose Osteoporotic vertebral fractures are common and morbid. Automated opportunistic screening for incidental vertebral fractures from radiographs, the highest volume imaging modality, could improve osteoporosis detection and management. We consider how to form patient-level fracture predictions and summarization to guide management, using our previously developed vertebral fracture classifier on segmented radiographs from a prospective cohort study of US men (MrOS). We compare the performance of logistic regression (LR) and generalized additive models (GAM) with combinations of individual vertebral scores and basic demographic covariates. Methods Subject-level LR and GAM models were created retrospectively using all fracture predictions or summary variables such as order statistics, adjacent vertebral interactions, and demographic covariates (age, race/ethnicity). The classifier outputs for 8663 vertebrae from 1176 thoracic and lumbar radiographs in 669 subjects were divided by subject to perform stratified fivefold cross-validation. Models were assessed using multiple metrics, including receiver operating characteristic (ROC) and precision-recall (PR) curves. Results The best model (AUC-ROC = 0.968) was a GAM using the top three maximum vertebral fracture scores and age. Using top-ranked scores only, rather than all vertebral scores, improved performance for both model classes. Adding age, but not ethnicity, to the GAMs improved performance slightly. Conclusion Maximal vertebral fracture scores resulted in the highest-performing models. While combining multiple vertebral body predictions risks decreasing specificity, our results demonstrate that subject-level models maintain good predictive performance. Thresholding strategies can be used to control sensitivity and specificity as clinically appropriate.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Deep Learning</subject><subject>Endocrinology</subject><subject>Humans</subject><subject>Logistic Models</subject><subject>Lumbar Vertebrae - diagnostic imaging</subject><subject>Lumbar Vertebrae - injuries</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Middle Aged</subject><subject>Original Article</subject><subject>Orthopedics</subject><subject>Osteoporotic Fractures - diagnostic imaging</subject><subject>Osteoporotic Fractures - epidemiology</subject><subject>Retrospective Studies</subject><subject>ROC Curve</subject><subject>Spinal Fractures - diagnostic imaging</subject><subject>Spinal Fractures - epidemiology</subject><issn>1862-3514</issn><issn>1862-3514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtP3DAURq0KVGDgD7CovOwm1L5OnJklQqUgIXUBrC0_bgaPkji1HaSi_vh6HlRdsbqv757FIeSSsyvOWPstcS6btmJQV4zXQlRvn8gpX0qoRMPro__6E3KW0oYxyXgjP5MTsYJGAuen5M_jbDZoc9XjK_Y0TX7UPQ0pY5hCDNlb2kVt8xyRThGdt9mHkdowGD_6cU0d4kR71HE3vWLMaOIWMedpzonq0dHeDz6jK9khrKOeXgrV6azPyXGn-4QXh7ogz7ffn27uqoefP-5vrh8qC7DMFQC0tWsZcNEYWNkOWMMdl9JIDkKUrbSic6ztWNcgKyNAbcrCGKxXrRQL8nXPnWL4NWPKavDJYt_rEcOclOAMlu1SyLpEYR-1MaQUsVNT9IOOvxVnamtd7a2rYl3trKu38vTlwJ_NgO7fy7vmEhD7QCqncY1RbcIci-n0EfYv84iP3w</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>Cross, Nathan M.</creator><creator>Perry, Jessica</creator><creator>Dong, Qifei</creator><creator>Luo, Gang</creator><creator>Renslo, Jonathan</creator><creator>Chang, Brian C.</creator><creator>Lane, Nancy E.</creator><creator>Marshall, Lynn</creator><creator>Johnston, Sandra K.</creator><creator>Haynor, David R.</creator><creator>Jarvik, Jeffrey G.</creator><creator>Heagerty, Patrick J.</creator><general>Springer London</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5040-4340</orcidid></search><sort><creationdate>20240910</creationdate><title>Subject-level spinal osteoporotic fracture prediction combining deep learning vertebral outputs and limited demographic data</title><author>Cross, Nathan M. ; Perry, Jessica ; Dong, Qifei ; Luo, Gang ; Renslo, Jonathan ; Chang, Brian C. ; Lane, Nancy E. ; Marshall, Lynn ; Johnston, Sandra K. ; Haynor, David R. ; Jarvik, Jeffrey G. ; Heagerty, Patrick J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-22274d702135b29cf2051d166b612331356c3fd07f0f5e0356224bfd0bbe49763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Deep Learning</topic><topic>Endocrinology</topic><topic>Humans</topic><topic>Logistic Models</topic><topic>Lumbar Vertebrae - diagnostic imaging</topic><topic>Lumbar Vertebrae - injuries</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Middle Aged</topic><topic>Original Article</topic><topic>Orthopedics</topic><topic>Osteoporotic Fractures - diagnostic imaging</topic><topic>Osteoporotic Fractures - epidemiology</topic><topic>Retrospective Studies</topic><topic>ROC Curve</topic><topic>Spinal Fractures - diagnostic imaging</topic><topic>Spinal Fractures - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cross, Nathan M.</creatorcontrib><creatorcontrib>Perry, Jessica</creatorcontrib><creatorcontrib>Dong, Qifei</creatorcontrib><creatorcontrib>Luo, Gang</creatorcontrib><creatorcontrib>Renslo, Jonathan</creatorcontrib><creatorcontrib>Chang, Brian C.</creatorcontrib><creatorcontrib>Lane, Nancy E.</creatorcontrib><creatorcontrib>Marshall, Lynn</creatorcontrib><creatorcontrib>Johnston, Sandra K.</creatorcontrib><creatorcontrib>Haynor, David R.</creatorcontrib><creatorcontrib>Jarvik, Jeffrey G.</creatorcontrib><creatorcontrib>Heagerty, Patrick J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Archives of osteoporosis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cross, Nathan M.</au><au>Perry, Jessica</au><au>Dong, Qifei</au><au>Luo, Gang</au><au>Renslo, Jonathan</au><au>Chang, Brian C.</au><au>Lane, Nancy E.</au><au>Marshall, Lynn</au><au>Johnston, Sandra K.</au><au>Haynor, David R.</au><au>Jarvik, Jeffrey G.</au><au>Heagerty, Patrick J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subject-level spinal osteoporotic fracture prediction combining deep learning vertebral outputs and limited demographic data</atitle><jtitle>Archives of osteoporosis</jtitle><stitle>Arch Osteoporos</stitle><addtitle>Arch Osteoporos</addtitle><date>2024-09-10</date><risdate>2024</risdate><volume>19</volume><issue>1</issue><spage>87</spage><pages>87-</pages><artnum>87</artnum><issn>1862-3514</issn><eissn>1862-3514</eissn><abstract>Summary Automated screening for vertebral fractures could improve outcomes. We achieved an AUC-ROC = 0.968 for the prediction of moderate to severe fracture using a GAM with age and three maximal vertebral body scores of fracture from a convolutional neural network. Maximal fracture scores resulted in a performant model for subject-level fracture prediction. Combining individual deep learning vertebral body fracture scores and demographic covariates for subject-level classification of osteoporotic fracture achieved excellent performance (AUC-ROC of 0.968) on a large dataset of radiographs with basic demographic data. Purpose Osteoporotic vertebral fractures are common and morbid. Automated opportunistic screening for incidental vertebral fractures from radiographs, the highest volume imaging modality, could improve osteoporosis detection and management. We consider how to form patient-level fracture predictions and summarization to guide management, using our previously developed vertebral fracture classifier on segmented radiographs from a prospective cohort study of US men (MrOS). We compare the performance of logistic regression (LR) and generalized additive models (GAM) with combinations of individual vertebral scores and basic demographic covariates. Methods Subject-level LR and GAM models were created retrospectively using all fracture predictions or summary variables such as order statistics, adjacent vertebral interactions, and demographic covariates (age, race/ethnicity). The classifier outputs for 8663 vertebrae from 1176 thoracic and lumbar radiographs in 669 subjects were divided by subject to perform stratified fivefold cross-validation. Models were assessed using multiple metrics, including receiver operating characteristic (ROC) and precision-recall (PR) curves. Results The best model (AUC-ROC = 0.968) was a GAM using the top three maximum vertebral fracture scores and age. Using top-ranked scores only, rather than all vertebral scores, improved performance for both model classes. Adding age, but not ethnicity, to the GAMs improved performance slightly. Conclusion Maximal vertebral fracture scores resulted in the highest-performing models. While combining multiple vertebral body predictions risks decreasing specificity, our results demonstrate that subject-level models maintain good predictive performance. Thresholding strategies can be used to control sensitivity and specificity as clinically appropriate.</abstract><cop>London</cop><pub>Springer London</pub><pmid>39256211</pmid><doi>10.1007/s11657-024-01433-z</doi><orcidid>https://orcid.org/0000-0002-5040-4340</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-3514
ispartof Archives of osteoporosis, 2024-09, Vol.19 (1), p.87, Article 87
issn 1862-3514
1862-3514
language eng
recordid cdi_proquest_miscellaneous_3102878364
source MEDLINE; SpringerNature Journals
subjects Aged
Aged, 80 and over
Deep Learning
Endocrinology
Humans
Logistic Models
Lumbar Vertebrae - diagnostic imaging
Lumbar Vertebrae - injuries
Male
Medicine
Medicine & Public Health
Middle Aged
Original Article
Orthopedics
Osteoporotic Fractures - diagnostic imaging
Osteoporotic Fractures - epidemiology
Retrospective Studies
ROC Curve
Spinal Fractures - diagnostic imaging
Spinal Fractures - epidemiology
title Subject-level spinal osteoporotic fracture prediction combining deep learning vertebral outputs and limited demographic data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T16%3A19%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subject-level%20spinal%20osteoporotic%20fracture%20prediction%20combining%20deep%20learning%20vertebral%20outputs%20and%20limited%20demographic%20data&rft.jtitle=Archives%20of%20osteoporosis&rft.au=Cross,%20Nathan%20M.&rft.date=2024-09-10&rft.volume=19&rft.issue=1&rft.spage=87&rft.pages=87-&rft.artnum=87&rft.issn=1862-3514&rft.eissn=1862-3514&rft_id=info:doi/10.1007/s11657-024-01433-z&rft_dat=%3Cproquest_cross%3E3102878364%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102878364&rft_id=info:pmid/39256211&rfr_iscdi=true