Federated Motor Imagery Classification for Privacy-Preserving Brain-Computer Interfaces
Training an accurate classifier for EEG-based brain-computer interface (BCI) requires EEG data from a large number of users, whereas protecting their data privacy is a critical consideration. Federated learning (FL) is a promising solution to this challenge. This paper proposes Federated classificat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on neural systems and rehabilitation engineering 2024, Vol.32, p.3442-3451 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3451 |
---|---|
container_issue | |
container_start_page | 3442 |
container_title | IEEE transactions on neural systems and rehabilitation engineering |
container_volume | 32 |
creator | Jia, Tianwang Meng, Lubin Li, Siyang Liu, Jiajing Wu, Dongrui |
description | Training an accurate classifier for EEG-based brain-computer interface (BCI) requires EEG data from a large number of users, whereas protecting their data privacy is a critical consideration. Federated learning (FL) is a promising solution to this challenge. This paper proposes Federated classification with local Batch-specific batch normalization and Sharpness-aware minimization (FedBS) for privacy protection in EEG-based motor imagery (MI) classification. FedBS utilizes local batch-specific batch normalization to reduce data discrepancies among different clients, and sharpness-aware minimization optimizer in local training to improve model generalization. Experiments on three public MI datasets using three popular deep learning models demonstrated that FedBS outperformed six state-of-the-art FL approaches. Remarkably, it also outperformed centralized training, which does not consider privacy protection at all. In summary, FedBS protects user EEG data privacy, enabling multiple BCI users to participate in large-scale machine learning model training, which in turn improves the BCI decoding accuracy. |
doi_str_mv | 10.1109/TNSRE.2024.3457504 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3102876671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10672548</ieee_id><doaj_id>oai_doaj_org_article_5db96d9bae6e42ecb35f0803a8965016</doaj_id><sourcerecordid>3102876671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-efcdb7b7bcf65ff4a9308fa35c3540be1e0efb4cfdd6e269b828bf9ea122d8a73</originalsourceid><addsrcrecordid>eNpNkV1rFDEUhoNYbK3-ARGZy97Mmu_JXOrS6kKtRVt6Gc4kJ0vKzGRNZgv7753trkUCySF53ycXDyEfGF0wRtvPdze_f10uOOVyIaRqFJWvyBlTytSUM_p6PwtZS8HpKXlbyiOlrNGqeUNORcuVYqY9Iw9X6DHDhL76kaaUq9UAa8y7atlDKTFEB1NMYxXmp9scn8Dt6tuMBfNTHNfV1wxxrJdp2GwnnMvjvAdwWN6RkwB9wffH85zcX13eLb_X1z-_rZZfrmsnmJpqDM53zbxc0CoECa2gJoBQTihJO2RIMXTSBe81ct12hpsutAiMc2-gEedkdeD6BI92k-MAeWcTRPt8kfLaQp6i69Eq37Xatx2gRsnRdUIFaqgA02pFmZ5ZFwfWJqc_WyyTHWJx2PcwYtoWKxjlptG6YXOUH6Iup1IyhpevGbV7OfZZjt3LsUc5c-nTkb_tBvQvlX825sDHQyAi4n9E3XAljfgLG2-VWA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102876671</pqid></control><display><type>article</type><title>Federated Motor Imagery Classification for Privacy-Preserving Brain-Computer Interfaces</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Jia, Tianwang ; Meng, Lubin ; Li, Siyang ; Liu, Jiajing ; Wu, Dongrui</creator><creatorcontrib>Jia, Tianwang ; Meng, Lubin ; Li, Siyang ; Liu, Jiajing ; Wu, Dongrui</creatorcontrib><description>Training an accurate classifier for EEG-based brain-computer interface (BCI) requires EEG data from a large number of users, whereas protecting their data privacy is a critical consideration. Federated learning (FL) is a promising solution to this challenge. This paper proposes Federated classification with local Batch-specific batch normalization and Sharpness-aware minimization (FedBS) for privacy protection in EEG-based motor imagery (MI) classification. FedBS utilizes local batch-specific batch normalization to reduce data discrepancies among different clients, and sharpness-aware minimization optimizer in local training to improve model generalization. Experiments on three public MI datasets using three popular deep learning models demonstrated that FedBS outperformed six state-of-the-art FL approaches. Remarkably, it also outperformed centralized training, which does not consider privacy protection at all. In summary, FedBS protects user EEG data privacy, enabling multiple BCI users to participate in large-scale machine learning model training, which in turn improves the BCI decoding accuracy.</description><identifier>ISSN: 1534-4320</identifier><identifier>ISSN: 1558-0210</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2024.3457504</identifier><identifier>PMID: 39255189</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Brain modeling ; Brain-computer interface ; Brain-Computer Interfaces ; Computer Security ; Data models ; Data privacy ; Deep Learning ; electroencephalogram ; Electroencephalography ; federated learning ; Humans ; Imagination - physiology ; Machine Learning ; motor imagery ; Privacy ; privacy protection ; Protection ; Servers ; Training</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.3442-3451</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-efcdb7b7bcf65ff4a9308fa35c3540be1e0efb4cfdd6e269b828bf9ea122d8a73</cites><orcidid>0000-0002-7153-9703 ; 0009-0009-4874-3501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,4025,27928,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39255189$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Tianwang</creatorcontrib><creatorcontrib>Meng, Lubin</creatorcontrib><creatorcontrib>Li, Siyang</creatorcontrib><creatorcontrib>Liu, Jiajing</creatorcontrib><creatorcontrib>Wu, Dongrui</creatorcontrib><title>Federated Motor Imagery Classification for Privacy-Preserving Brain-Computer Interfaces</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Training an accurate classifier for EEG-based brain-computer interface (BCI) requires EEG data from a large number of users, whereas protecting their data privacy is a critical consideration. Federated learning (FL) is a promising solution to this challenge. This paper proposes Federated classification with local Batch-specific batch normalization and Sharpness-aware minimization (FedBS) for privacy protection in EEG-based motor imagery (MI) classification. FedBS utilizes local batch-specific batch normalization to reduce data discrepancies among different clients, and sharpness-aware minimization optimizer in local training to improve model generalization. Experiments on three public MI datasets using three popular deep learning models demonstrated that FedBS outperformed six state-of-the-art FL approaches. Remarkably, it also outperformed centralized training, which does not consider privacy protection at all. In summary, FedBS protects user EEG data privacy, enabling multiple BCI users to participate in large-scale machine learning model training, which in turn improves the BCI decoding accuracy.</description><subject>Algorithms</subject><subject>Brain modeling</subject><subject>Brain-computer interface</subject><subject>Brain-Computer Interfaces</subject><subject>Computer Security</subject><subject>Data models</subject><subject>Data privacy</subject><subject>Deep Learning</subject><subject>electroencephalogram</subject><subject>Electroencephalography</subject><subject>federated learning</subject><subject>Humans</subject><subject>Imagination - physiology</subject><subject>Machine Learning</subject><subject>motor imagery</subject><subject>Privacy</subject><subject>privacy protection</subject><subject>Protection</subject><subject>Servers</subject><subject>Training</subject><issn>1534-4320</issn><issn>1558-0210</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV1rFDEUhoNYbK3-ARGZy97Mmu_JXOrS6kKtRVt6Gc4kJ0vKzGRNZgv7753trkUCySF53ycXDyEfGF0wRtvPdze_f10uOOVyIaRqFJWvyBlTytSUM_p6PwtZS8HpKXlbyiOlrNGqeUNORcuVYqY9Iw9X6DHDhL76kaaUq9UAa8y7atlDKTFEB1NMYxXmp9scn8Dt6tuMBfNTHNfV1wxxrJdp2GwnnMvjvAdwWN6RkwB9wffH85zcX13eLb_X1z-_rZZfrmsnmJpqDM53zbxc0CoECa2gJoBQTihJO2RIMXTSBe81ct12hpsutAiMc2-gEedkdeD6BI92k-MAeWcTRPt8kfLaQp6i69Eq37Xatx2gRsnRdUIFaqgA02pFmZ5ZFwfWJqc_WyyTHWJx2PcwYtoWKxjlptG6YXOUH6Iup1IyhpevGbV7OfZZjt3LsUc5c-nTkb_tBvQvlX825sDHQyAi4n9E3XAljfgLG2-VWA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Jia, Tianwang</creator><creator>Meng, Lubin</creator><creator>Li, Siyang</creator><creator>Liu, Jiajing</creator><creator>Wu, Dongrui</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7153-9703</orcidid><orcidid>https://orcid.org/0009-0009-4874-3501</orcidid></search><sort><creationdate>2024</creationdate><title>Federated Motor Imagery Classification for Privacy-Preserving Brain-Computer Interfaces</title><author>Jia, Tianwang ; Meng, Lubin ; Li, Siyang ; Liu, Jiajing ; Wu, Dongrui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-efcdb7b7bcf65ff4a9308fa35c3540be1e0efb4cfdd6e269b828bf9ea122d8a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Brain modeling</topic><topic>Brain-computer interface</topic><topic>Brain-Computer Interfaces</topic><topic>Computer Security</topic><topic>Data models</topic><topic>Data privacy</topic><topic>Deep Learning</topic><topic>electroencephalogram</topic><topic>Electroencephalography</topic><topic>federated learning</topic><topic>Humans</topic><topic>Imagination - physiology</topic><topic>Machine Learning</topic><topic>motor imagery</topic><topic>Privacy</topic><topic>privacy protection</topic><topic>Protection</topic><topic>Servers</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Tianwang</creatorcontrib><creatorcontrib>Meng, Lubin</creatorcontrib><creatorcontrib>Li, Siyang</creatorcontrib><creatorcontrib>Liu, Jiajing</creatorcontrib><creatorcontrib>Wu, Dongrui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Tianwang</au><au>Meng, Lubin</au><au>Li, Siyang</au><au>Liu, Jiajing</au><au>Wu, Dongrui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Federated Motor Imagery Classification for Privacy-Preserving Brain-Computer Interfaces</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2024</date><risdate>2024</risdate><volume>32</volume><spage>3442</spage><epage>3451</epage><pages>3442-3451</pages><issn>1534-4320</issn><issn>1558-0210</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Training an accurate classifier for EEG-based brain-computer interface (BCI) requires EEG data from a large number of users, whereas protecting their data privacy is a critical consideration. Federated learning (FL) is a promising solution to this challenge. This paper proposes Federated classification with local Batch-specific batch normalization and Sharpness-aware minimization (FedBS) for privacy protection in EEG-based motor imagery (MI) classification. FedBS utilizes local batch-specific batch normalization to reduce data discrepancies among different clients, and sharpness-aware minimization optimizer in local training to improve model generalization. Experiments on three public MI datasets using three popular deep learning models demonstrated that FedBS outperformed six state-of-the-art FL approaches. Remarkably, it also outperformed centralized training, which does not consider privacy protection at all. In summary, FedBS protects user EEG data privacy, enabling multiple BCI users to participate in large-scale machine learning model training, which in turn improves the BCI decoding accuracy.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39255189</pmid><doi>10.1109/TNSRE.2024.3457504</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7153-9703</orcidid><orcidid>https://orcid.org/0009-0009-4874-3501</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-4320 |
ispartof | IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.3442-3451 |
issn | 1534-4320 1558-0210 1558-0210 |
language | eng |
recordid | cdi_proquest_miscellaneous_3102876671 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Algorithms Brain modeling Brain-computer interface Brain-Computer Interfaces Computer Security Data models Data privacy Deep Learning electroencephalogram Electroencephalography federated learning Humans Imagination - physiology Machine Learning motor imagery Privacy privacy protection Protection Servers Training |
title | Federated Motor Imagery Classification for Privacy-Preserving Brain-Computer Interfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T16%3A34%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Federated%20Motor%20Imagery%20Classification%20for%20Privacy-Preserving%20Brain-Computer%20Interfaces&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Jia,%20Tianwang&rft.date=2024&rft.volume=32&rft.spage=3442&rft.epage=3451&rft.pages=3442-3451&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2024.3457504&rft_dat=%3Cproquest_pubme%3E3102876671%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102876671&rft_id=info:pmid/39255189&rft_ieee_id=10672548&rft_doaj_id=oai_doaj_org_article_5db96d9bae6e42ecb35f0803a8965016&rfr_iscdi=true |