Federated Motor Imagery Classification for Privacy-Preserving Brain-Computer Interfaces

Training an accurate classifier for EEG-based brain-computer interface (BCI) requires EEG data from a large number of users, whereas protecting their data privacy is a critical consideration. Federated learning (FL) is a promising solution to this challenge. This paper proposes Federated classificat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural systems and rehabilitation engineering 2024, Vol.32, p.3442-3451
Hauptverfasser: Jia, Tianwang, Meng, Lubin, Li, Siyang, Liu, Jiajing, Wu, Dongrui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3451
container_issue
container_start_page 3442
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 32
creator Jia, Tianwang
Meng, Lubin
Li, Siyang
Liu, Jiajing
Wu, Dongrui
description Training an accurate classifier for EEG-based brain-computer interface (BCI) requires EEG data from a large number of users, whereas protecting their data privacy is a critical consideration. Federated learning (FL) is a promising solution to this challenge. This paper proposes Federated classification with local Batch-specific batch normalization and Sharpness-aware minimization (FedBS) for privacy protection in EEG-based motor imagery (MI) classification. FedBS utilizes local batch-specific batch normalization to reduce data discrepancies among different clients, and sharpness-aware minimization optimizer in local training to improve model generalization. Experiments on three public MI datasets using three popular deep learning models demonstrated that FedBS outperformed six state-of-the-art FL approaches. Remarkably, it also outperformed centralized training, which does not consider privacy protection at all. In summary, FedBS protects user EEG data privacy, enabling multiple BCI users to participate in large-scale machine learning model training, which in turn improves the BCI decoding accuracy.
doi_str_mv 10.1109/TNSRE.2024.3457504
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3102876671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10672548</ieee_id><doaj_id>oai_doaj_org_article_5db96d9bae6e42ecb35f0803a8965016</doaj_id><sourcerecordid>3102876671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-efcdb7b7bcf65ff4a9308fa35c3540be1e0efb4cfdd6e269b828bf9ea122d8a73</originalsourceid><addsrcrecordid>eNpNkV1rFDEUhoNYbK3-ARGZy97Mmu_JXOrS6kKtRVt6Gc4kJ0vKzGRNZgv7753trkUCySF53ycXDyEfGF0wRtvPdze_f10uOOVyIaRqFJWvyBlTytSUM_p6PwtZS8HpKXlbyiOlrNGqeUNORcuVYqY9Iw9X6DHDhL76kaaUq9UAa8y7atlDKTFEB1NMYxXmp9scn8Dt6tuMBfNTHNfV1wxxrJdp2GwnnMvjvAdwWN6RkwB9wffH85zcX13eLb_X1z-_rZZfrmsnmJpqDM53zbxc0CoECa2gJoBQTihJO2RIMXTSBe81ct12hpsutAiMc2-gEedkdeD6BI92k-MAeWcTRPt8kfLaQp6i69Eq37Xatx2gRsnRdUIFaqgA02pFmZ5ZFwfWJqc_WyyTHWJx2PcwYtoWKxjlptG6YXOUH6Iup1IyhpevGbV7OfZZjt3LsUc5c-nTkb_tBvQvlX825sDHQyAi4n9E3XAljfgLG2-VWA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102876671</pqid></control><display><type>article</type><title>Federated Motor Imagery Classification for Privacy-Preserving Brain-Computer Interfaces</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Jia, Tianwang ; Meng, Lubin ; Li, Siyang ; Liu, Jiajing ; Wu, Dongrui</creator><creatorcontrib>Jia, Tianwang ; Meng, Lubin ; Li, Siyang ; Liu, Jiajing ; Wu, Dongrui</creatorcontrib><description>Training an accurate classifier for EEG-based brain-computer interface (BCI) requires EEG data from a large number of users, whereas protecting their data privacy is a critical consideration. Federated learning (FL) is a promising solution to this challenge. This paper proposes Federated classification with local Batch-specific batch normalization and Sharpness-aware minimization (FedBS) for privacy protection in EEG-based motor imagery (MI) classification. FedBS utilizes local batch-specific batch normalization to reduce data discrepancies among different clients, and sharpness-aware minimization optimizer in local training to improve model generalization. Experiments on three public MI datasets using three popular deep learning models demonstrated that FedBS outperformed six state-of-the-art FL approaches. Remarkably, it also outperformed centralized training, which does not consider privacy protection at all. In summary, FedBS protects user EEG data privacy, enabling multiple BCI users to participate in large-scale machine learning model training, which in turn improves the BCI decoding accuracy.</description><identifier>ISSN: 1534-4320</identifier><identifier>ISSN: 1558-0210</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2024.3457504</identifier><identifier>PMID: 39255189</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Brain modeling ; Brain-computer interface ; Brain-Computer Interfaces ; Computer Security ; Data models ; Data privacy ; Deep Learning ; electroencephalogram ; Electroencephalography ; federated learning ; Humans ; Imagination - physiology ; Machine Learning ; motor imagery ; Privacy ; privacy protection ; Protection ; Servers ; Training</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.3442-3451</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-efcdb7b7bcf65ff4a9308fa35c3540be1e0efb4cfdd6e269b828bf9ea122d8a73</cites><orcidid>0000-0002-7153-9703 ; 0009-0009-4874-3501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,4025,27928,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39255189$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Tianwang</creatorcontrib><creatorcontrib>Meng, Lubin</creatorcontrib><creatorcontrib>Li, Siyang</creatorcontrib><creatorcontrib>Liu, Jiajing</creatorcontrib><creatorcontrib>Wu, Dongrui</creatorcontrib><title>Federated Motor Imagery Classification for Privacy-Preserving Brain-Computer Interfaces</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Training an accurate classifier for EEG-based brain-computer interface (BCI) requires EEG data from a large number of users, whereas protecting their data privacy is a critical consideration. Federated learning (FL) is a promising solution to this challenge. This paper proposes Federated classification with local Batch-specific batch normalization and Sharpness-aware minimization (FedBS) for privacy protection in EEG-based motor imagery (MI) classification. FedBS utilizes local batch-specific batch normalization to reduce data discrepancies among different clients, and sharpness-aware minimization optimizer in local training to improve model generalization. Experiments on three public MI datasets using three popular deep learning models demonstrated that FedBS outperformed six state-of-the-art FL approaches. Remarkably, it also outperformed centralized training, which does not consider privacy protection at all. In summary, FedBS protects user EEG data privacy, enabling multiple BCI users to participate in large-scale machine learning model training, which in turn improves the BCI decoding accuracy.</description><subject>Algorithms</subject><subject>Brain modeling</subject><subject>Brain-computer interface</subject><subject>Brain-Computer Interfaces</subject><subject>Computer Security</subject><subject>Data models</subject><subject>Data privacy</subject><subject>Deep Learning</subject><subject>electroencephalogram</subject><subject>Electroencephalography</subject><subject>federated learning</subject><subject>Humans</subject><subject>Imagination - physiology</subject><subject>Machine Learning</subject><subject>motor imagery</subject><subject>Privacy</subject><subject>privacy protection</subject><subject>Protection</subject><subject>Servers</subject><subject>Training</subject><issn>1534-4320</issn><issn>1558-0210</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV1rFDEUhoNYbK3-ARGZy97Mmu_JXOrS6kKtRVt6Gc4kJ0vKzGRNZgv7753trkUCySF53ycXDyEfGF0wRtvPdze_f10uOOVyIaRqFJWvyBlTytSUM_p6PwtZS8HpKXlbyiOlrNGqeUNORcuVYqY9Iw9X6DHDhL76kaaUq9UAa8y7atlDKTFEB1NMYxXmp9scn8Dt6tuMBfNTHNfV1wxxrJdp2GwnnMvjvAdwWN6RkwB9wffH85zcX13eLb_X1z-_rZZfrmsnmJpqDM53zbxc0CoECa2gJoBQTihJO2RIMXTSBe81ct12hpsutAiMc2-gEedkdeD6BI92k-MAeWcTRPt8kfLaQp6i69Eq37Xatx2gRsnRdUIFaqgA02pFmZ5ZFwfWJqc_WyyTHWJx2PcwYtoWKxjlptG6YXOUH6Iup1IyhpevGbV7OfZZjt3LsUc5c-nTkb_tBvQvlX825sDHQyAi4n9E3XAljfgLG2-VWA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Jia, Tianwang</creator><creator>Meng, Lubin</creator><creator>Li, Siyang</creator><creator>Liu, Jiajing</creator><creator>Wu, Dongrui</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7153-9703</orcidid><orcidid>https://orcid.org/0009-0009-4874-3501</orcidid></search><sort><creationdate>2024</creationdate><title>Federated Motor Imagery Classification for Privacy-Preserving Brain-Computer Interfaces</title><author>Jia, Tianwang ; Meng, Lubin ; Li, Siyang ; Liu, Jiajing ; Wu, Dongrui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-efcdb7b7bcf65ff4a9308fa35c3540be1e0efb4cfdd6e269b828bf9ea122d8a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Brain modeling</topic><topic>Brain-computer interface</topic><topic>Brain-Computer Interfaces</topic><topic>Computer Security</topic><topic>Data models</topic><topic>Data privacy</topic><topic>Deep Learning</topic><topic>electroencephalogram</topic><topic>Electroencephalography</topic><topic>federated learning</topic><topic>Humans</topic><topic>Imagination - physiology</topic><topic>Machine Learning</topic><topic>motor imagery</topic><topic>Privacy</topic><topic>privacy protection</topic><topic>Protection</topic><topic>Servers</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Tianwang</creatorcontrib><creatorcontrib>Meng, Lubin</creatorcontrib><creatorcontrib>Li, Siyang</creatorcontrib><creatorcontrib>Liu, Jiajing</creatorcontrib><creatorcontrib>Wu, Dongrui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Tianwang</au><au>Meng, Lubin</au><au>Li, Siyang</au><au>Liu, Jiajing</au><au>Wu, Dongrui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Federated Motor Imagery Classification for Privacy-Preserving Brain-Computer Interfaces</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2024</date><risdate>2024</risdate><volume>32</volume><spage>3442</spage><epage>3451</epage><pages>3442-3451</pages><issn>1534-4320</issn><issn>1558-0210</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Training an accurate classifier for EEG-based brain-computer interface (BCI) requires EEG data from a large number of users, whereas protecting their data privacy is a critical consideration. Federated learning (FL) is a promising solution to this challenge. This paper proposes Federated classification with local Batch-specific batch normalization and Sharpness-aware minimization (FedBS) for privacy protection in EEG-based motor imagery (MI) classification. FedBS utilizes local batch-specific batch normalization to reduce data discrepancies among different clients, and sharpness-aware minimization optimizer in local training to improve model generalization. Experiments on three public MI datasets using three popular deep learning models demonstrated that FedBS outperformed six state-of-the-art FL approaches. Remarkably, it also outperformed centralized training, which does not consider privacy protection at all. In summary, FedBS protects user EEG data privacy, enabling multiple BCI users to participate in large-scale machine learning model training, which in turn improves the BCI decoding accuracy.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39255189</pmid><doi>10.1109/TNSRE.2024.3457504</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7153-9703</orcidid><orcidid>https://orcid.org/0009-0009-4874-3501</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-4320
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.3442-3451
issn 1534-4320
1558-0210
1558-0210
language eng
recordid cdi_proquest_miscellaneous_3102876671
source MEDLINE; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library
subjects Algorithms
Brain modeling
Brain-computer interface
Brain-Computer Interfaces
Computer Security
Data models
Data privacy
Deep Learning
electroencephalogram
Electroencephalography
federated learning
Humans
Imagination - physiology
Machine Learning
motor imagery
Privacy
privacy protection
Protection
Servers
Training
title Federated Motor Imagery Classification for Privacy-Preserving Brain-Computer Interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T16%3A34%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Federated%20Motor%20Imagery%20Classification%20for%20Privacy-Preserving%20Brain-Computer%20Interfaces&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Jia,%20Tianwang&rft.date=2024&rft.volume=32&rft.spage=3442&rft.epage=3451&rft.pages=3442-3451&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2024.3457504&rft_dat=%3Cproquest_pubme%3E3102876671%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102876671&rft_id=info:pmid/39255189&rft_ieee_id=10672548&rft_doaj_id=oai_doaj_org_article_5db96d9bae6e42ecb35f0803a8965016&rfr_iscdi=true