Direction Modulation of Intramolecular Electric Field Boosts Hole Transport in Phthalocyanines for Perovskite Solar Cells
Tuning the strength of intramolecular electric field (IEF) in conjugated molecules has emerged as an effective approach to boost charge transfer. While direction manipulation of IEF would be a potential way that is still unclear. Here, we leverage the control of peripheral substituents of conjugated...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2025-01, Vol.64 (2), p.e202414249-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | e202414249 |
container_title | Angewandte Chemie International Edition |
container_volume | 64 |
creator | Xiao, Guo‐Bin Mu, Xijiao Suo, Zhen‐Yang Zhang, Xukai Yu, Zefeng Cao, Jing |
description | Tuning the strength of intramolecular electric field (IEF) in conjugated molecules has emerged as an effective approach to boost charge transfer. While direction manipulation of IEF would be a potential way that is still unclear. Here, we leverage the control of peripheral substituents of conjugated phthalocyanines to chemically tune the spatial orientation of IEF. By analyzing the spatial swing of side chains using the Kolmogorov‐Arnold representation and least squares algorithm, a comprehensive mathematical‐physical model has been established. This model enables rapid evaluation of the IEF and maximum hole transport performance induced by spatial swings. The champion phthalocyanine as dopant‐free hole transport material in perovskite solar cell realizes a record performance of 23.41 %. Greatly device stability is also exhibited. This work affords a new way to enhance hole transport capabilities of conjugated molecules by optimizing their IEF vector for photovoltaic devices.
A direction modulation of intramolecular electric field (IEF) strategy is demonstrated to be a crucial factor to improve the charge transport capabilities of conjugated molecules. Furthermore, we obtain a set of empirical formulas to provide a potential approach to rapidly assess the hole transport properties based on molecular structure. Such a modulation results in a record performance of 23.41 % for perovskite solar cells based on phthalocyanine as dopant‐free hole transport material. The greatly improved device stability is also obtained. |
doi_str_mv | 10.1002/anie.202414249 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3102469647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153541811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2589-6cc75e1f3d7ed6dc9aecbf32ba7d4d4462362b84c022c11d709cbc89343a78843</originalsourceid><addsrcrecordid>eNqFkUlPwzAUhC0EYr9yRJa4cEmJl8TOEUoLlVgqUc6RY78IQxoXOwH13-NSFokLF7-R3-fRyIPQEUkHJE3pmWotDGhKOeGUFxtol2SUJEwIthk1ZywRMiM7aC-E58hLmebbaIcVNCPx2EXLS-tBd9a1-NaZvlGf0tV40nZezV0DOl56PIqi81bjsYXG4AvnQhfwddzjmVdtWDjfYdvi6VP3pBqnlzFYCwHXzuMpePcWXmwH-MGtzIbQNOEAbdWqCXD4NffR43g0G14nN_dXk-H5TaJpJosk11pkQGpmBJjc6EKBrmpGKyUMN5znlOW0klynlGpCjEgLXWlZMM6UkJKzfXS69l1499pD6Mq5DTomUC24PpSMxN_Li5yLiJ78QZ9d79uYLlIZyziRhERqsKa0dyF4qMuFt3PllyVJy1Up5aqU8qeU-OD4y7av5mB-8O8WIlCsgXfbwPIfu_L8bjL6Nf8AP5uaBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153541811</pqid></control><display><type>article</type><title>Direction Modulation of Intramolecular Electric Field Boosts Hole Transport in Phthalocyanines for Perovskite Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xiao, Guo‐Bin ; Mu, Xijiao ; Suo, Zhen‐Yang ; Zhang, Xukai ; Yu, Zefeng ; Cao, Jing</creator><creatorcontrib>Xiao, Guo‐Bin ; Mu, Xijiao ; Suo, Zhen‐Yang ; Zhang, Xukai ; Yu, Zefeng ; Cao, Jing</creatorcontrib><description>Tuning the strength of intramolecular electric field (IEF) in conjugated molecules has emerged as an effective approach to boost charge transfer. While direction manipulation of IEF would be a potential way that is still unclear. Here, we leverage the control of peripheral substituents of conjugated phthalocyanines to chemically tune the spatial orientation of IEF. By analyzing the spatial swing of side chains using the Kolmogorov‐Arnold representation and least squares algorithm, a comprehensive mathematical‐physical model has been established. This model enables rapid evaluation of the IEF and maximum hole transport performance induced by spatial swings. The champion phthalocyanine as dopant‐free hole transport material in perovskite solar cell realizes a record performance of 23.41 %. Greatly device stability is also exhibited. This work affords a new way to enhance hole transport capabilities of conjugated molecules by optimizing their IEF vector for photovoltaic devices.
A direction modulation of intramolecular electric field (IEF) strategy is demonstrated to be a crucial factor to improve the charge transport capabilities of conjugated molecules. Furthermore, we obtain a set of empirical formulas to provide a potential approach to rapidly assess the hole transport properties based on molecular structure. Such a modulation results in a record performance of 23.41 % for perovskite solar cells based on phthalocyanine as dopant‐free hole transport material. The greatly improved device stability is also obtained.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202414249</identifier><identifier>PMID: 39251392</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Charge transfer ; Electric field strength ; Electric fields ; Hole Transport Material ; Intramolecular Electric Field ; Performance evaluation ; Perovskite ; Perovskites ; Photovoltaic cells ; Photovoltaics ; Phthalocyanine ; Solar Cell ; Solar cells</subject><ispartof>Angewandte Chemie International Edition, 2025-01, Vol.64 (2), p.e202414249-n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><rights>2025 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2589-6cc75e1f3d7ed6dc9aecbf32ba7d4d4462362b84c022c11d709cbc89343a78843</cites><orcidid>0000-0003-3978-911X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202414249$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202414249$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39251392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Guo‐Bin</creatorcontrib><creatorcontrib>Mu, Xijiao</creatorcontrib><creatorcontrib>Suo, Zhen‐Yang</creatorcontrib><creatorcontrib>Zhang, Xukai</creatorcontrib><creatorcontrib>Yu, Zefeng</creatorcontrib><creatorcontrib>Cao, Jing</creatorcontrib><title>Direction Modulation of Intramolecular Electric Field Boosts Hole Transport in Phthalocyanines for Perovskite Solar Cells</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Tuning the strength of intramolecular electric field (IEF) in conjugated molecules has emerged as an effective approach to boost charge transfer. While direction manipulation of IEF would be a potential way that is still unclear. Here, we leverage the control of peripheral substituents of conjugated phthalocyanines to chemically tune the spatial orientation of IEF. By analyzing the spatial swing of side chains using the Kolmogorov‐Arnold representation and least squares algorithm, a comprehensive mathematical‐physical model has been established. This model enables rapid evaluation of the IEF and maximum hole transport performance induced by spatial swings. The champion phthalocyanine as dopant‐free hole transport material in perovskite solar cell realizes a record performance of 23.41 %. Greatly device stability is also exhibited. This work affords a new way to enhance hole transport capabilities of conjugated molecules by optimizing their IEF vector for photovoltaic devices.
A direction modulation of intramolecular electric field (IEF) strategy is demonstrated to be a crucial factor to improve the charge transport capabilities of conjugated molecules. Furthermore, we obtain a set of empirical formulas to provide a potential approach to rapidly assess the hole transport properties based on molecular structure. Such a modulation results in a record performance of 23.41 % for perovskite solar cells based on phthalocyanine as dopant‐free hole transport material. The greatly improved device stability is also obtained.</description><subject>Algorithms</subject><subject>Charge transfer</subject><subject>Electric field strength</subject><subject>Electric fields</subject><subject>Hole Transport Material</subject><subject>Intramolecular Electric Field</subject><subject>Performance evaluation</subject><subject>Perovskite</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Phthalocyanine</subject><subject>Solar Cell</subject><subject>Solar cells</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFkUlPwzAUhC0EYr9yRJa4cEmJl8TOEUoLlVgqUc6RY78IQxoXOwH13-NSFokLF7-R3-fRyIPQEUkHJE3pmWotDGhKOeGUFxtol2SUJEwIthk1ZywRMiM7aC-E58hLmebbaIcVNCPx2EXLS-tBd9a1-NaZvlGf0tV40nZezV0DOl56PIqi81bjsYXG4AvnQhfwddzjmVdtWDjfYdvi6VP3pBqnlzFYCwHXzuMpePcWXmwH-MGtzIbQNOEAbdWqCXD4NffR43g0G14nN_dXk-H5TaJpJosk11pkQGpmBJjc6EKBrmpGKyUMN5znlOW0klynlGpCjEgLXWlZMM6UkJKzfXS69l1499pD6Mq5DTomUC24PpSMxN_Li5yLiJ78QZ9d79uYLlIZyziRhERqsKa0dyF4qMuFt3PllyVJy1Up5aqU8qeU-OD4y7av5mB-8O8WIlCsgXfbwPIfu_L8bjL6Nf8AP5uaBg</recordid><startdate>20250110</startdate><enddate>20250110</enddate><creator>Xiao, Guo‐Bin</creator><creator>Mu, Xijiao</creator><creator>Suo, Zhen‐Yang</creator><creator>Zhang, Xukai</creator><creator>Yu, Zefeng</creator><creator>Cao, Jing</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3978-911X</orcidid></search><sort><creationdate>20250110</creationdate><title>Direction Modulation of Intramolecular Electric Field Boosts Hole Transport in Phthalocyanines for Perovskite Solar Cells</title><author>Xiao, Guo‐Bin ; Mu, Xijiao ; Suo, Zhen‐Yang ; Zhang, Xukai ; Yu, Zefeng ; Cao, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2589-6cc75e1f3d7ed6dc9aecbf32ba7d4d4462362b84c022c11d709cbc89343a78843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Charge transfer</topic><topic>Electric field strength</topic><topic>Electric fields</topic><topic>Hole Transport Material</topic><topic>Intramolecular Electric Field</topic><topic>Performance evaluation</topic><topic>Perovskite</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Phthalocyanine</topic><topic>Solar Cell</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Guo‐Bin</creatorcontrib><creatorcontrib>Mu, Xijiao</creatorcontrib><creatorcontrib>Suo, Zhen‐Yang</creatorcontrib><creatorcontrib>Zhang, Xukai</creatorcontrib><creatorcontrib>Yu, Zefeng</creatorcontrib><creatorcontrib>Cao, Jing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Guo‐Bin</au><au>Mu, Xijiao</au><au>Suo, Zhen‐Yang</au><au>Zhang, Xukai</au><au>Yu, Zefeng</au><au>Cao, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direction Modulation of Intramolecular Electric Field Boosts Hole Transport in Phthalocyanines for Perovskite Solar Cells</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2025-01-10</date><risdate>2025</risdate><volume>64</volume><issue>2</issue><spage>e202414249</spage><epage>n/a</epage><pages>e202414249-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>Tuning the strength of intramolecular electric field (IEF) in conjugated molecules has emerged as an effective approach to boost charge transfer. While direction manipulation of IEF would be a potential way that is still unclear. Here, we leverage the control of peripheral substituents of conjugated phthalocyanines to chemically tune the spatial orientation of IEF. By analyzing the spatial swing of side chains using the Kolmogorov‐Arnold representation and least squares algorithm, a comprehensive mathematical‐physical model has been established. This model enables rapid evaluation of the IEF and maximum hole transport performance induced by spatial swings. The champion phthalocyanine as dopant‐free hole transport material in perovskite solar cell realizes a record performance of 23.41 %. Greatly device stability is also exhibited. This work affords a new way to enhance hole transport capabilities of conjugated molecules by optimizing their IEF vector for photovoltaic devices.
A direction modulation of intramolecular electric field (IEF) strategy is demonstrated to be a crucial factor to improve the charge transport capabilities of conjugated molecules. Furthermore, we obtain a set of empirical formulas to provide a potential approach to rapidly assess the hole transport properties based on molecular structure. Such a modulation results in a record performance of 23.41 % for perovskite solar cells based on phthalocyanine as dopant‐free hole transport material. The greatly improved device stability is also obtained.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39251392</pmid><doi>10.1002/anie.202414249</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-3978-911X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2025-01, Vol.64 (2), p.e202414249-n/a |
issn | 1433-7851 1521-3773 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_3102469647 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Charge transfer Electric field strength Electric fields Hole Transport Material Intramolecular Electric Field Performance evaluation Perovskite Perovskites Photovoltaic cells Photovoltaics Phthalocyanine Solar Cell Solar cells |
title | Direction Modulation of Intramolecular Electric Field Boosts Hole Transport in Phthalocyanines for Perovskite Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A36%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direction%20Modulation%20of%20Intramolecular%20Electric%20Field%20Boosts%20Hole%20Transport%20in%20Phthalocyanines%20for%20Perovskite%20Solar%20Cells&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Xiao,%20Guo%E2%80%90Bin&rft.date=2025-01-10&rft.volume=64&rft.issue=2&rft.spage=e202414249&rft.epage=n/a&rft.pages=e202414249-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202414249&rft_dat=%3Cproquest_cross%3E3153541811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153541811&rft_id=info:pmid/39251392&rfr_iscdi=true |