Genome-wide association scan reveals the reinforcing effect of nano-potassium in improving the yield and quality of salt-stressed barley via enhancing the antioxidant defense system
Salinity is one of the major environmental factor that can greatly impact the growth, development, and productivity of barley. Our study aims to detect the natural phenotypic variation of morphological and physiological traits under both salinity and potassium nanoparticles (n-K) treatment. In addit...
Gespeichert in:
Veröffentlicht in: | Plant molecular biology 2024-10, Vol.114 (5), p.97, Article 97 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 97 |
container_title | Plant molecular biology |
container_volume | 114 |
creator | Thabet, Samar G. Safhi, Fatmah Ahmed Börner, Andreas Alqudah, Ahmad M. |
description | Salinity is one of the major environmental factor that can greatly impact the growth, development, and productivity of barley. Our study aims to detect the natural phenotypic variation of morphological and physiological traits under both salinity and potassium nanoparticles (n-K) treatment. In addition to understanding the genetic basis of salt tolerance in barley is a critical aspect of plant breeding for stress resilience. Therefore, a foliar application of n-K was applied at the vegetative stage for 138 barley accessions to enhance salt stress resilience. Interestingly, barley accessions showed high significant increment under n-K treatment compared to saline soil. Based on genome-wide association studies (GWAS) analysis, causative alleles /reliable genomic regions were discovered underlying improved salt resilience through the application of potassium nanoparticles. On chromosome 2H, a highly significant QTN marker (A:C) was located at position 36,665,559 bp which is associated with APX, AsA, GSH, GS, WGS, and TKW under n-K treatment. Inside this region, our candidate gene is
HORVU.MOREX.r3.2HG0111480
that annotated as NAC domain protein. Allelic variation detected that the accessions carrying C allele showed higher antioxidants (APX, AsA, and GSH) and barley yield traits (GS, WGS, and TKW) than the accessions carrying A allele, suggesting a positive selection of the accessions carrying C allele that could be used to develop barley varieties with improved salt stress resilience.
Key message
Highlighting the importance of the role of potassium nanoparticles in plant tolerance to abiotic stresses, including salinity is the potential for genetic improvement of barley crop resilience through the enhancement of antioxidant defense systems. |
doi_str_mv | 10.1007/s11103-024-01489-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3102074672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102216496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-ecdd2fcb36e9f5ce0ab2610adb1ff12874d52ba639e708080f0bcd9b511d82fd3</originalsourceid><addsrcrecordid>eNp9kcFu3CAQhlHVqtmmfYEeKqReciEFbGP7WEVtUilSLunZwjAkRDZsGLyNH6zvVzabNFIPFYdB4vuGgZ-Qj4KfCs7bLyiE4BXjsmZc1F3P1ldkI5q2Yg2X3Wuy4UK1rK6FPCLvEO84L1ql3pKjqpd1r6TYkN_nEOIM7Je3QDViNF5nHwNFowNNsAM9Ic23UPY-uJiMDzcUnAOTaXQ06BDZNuai-mWmPlA_b1Pc7am9tXqYLNXB0vtFTz6vewn1lBnmBIhg6ajTBCvdeU0h3Opgnl0dyiQP3pZKLTgICBRXzDC_J29cmQs-PNVj8vP7t-uzC3Z5df7j7OslM7JRmYGxVjozVgp61xjgepRKcG1H4ZyQXVvbRo5aVT20vCvL8dHYfmyEsJ10tjomJ4e-5Un3C2AeZo8GpkkHiAsOleCSt7VqZUE__4PexSWFMt0jJYUqP14oeaBMiogJ3LBNftZpHQQf9qEOh1CHEurwGOqwFunTU-tlnMH-VZ5TLEB1ALAchRtIL3f_p-0fAJOykA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102216496</pqid></control><display><type>article</type><title>Genome-wide association scan reveals the reinforcing effect of nano-potassium in improving the yield and quality of salt-stressed barley via enhancing the antioxidant defense system</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Thabet, Samar G. ; Safhi, Fatmah Ahmed ; Börner, Andreas ; Alqudah, Ahmad M.</creator><creatorcontrib>Thabet, Samar G. ; Safhi, Fatmah Ahmed ; Börner, Andreas ; Alqudah, Ahmad M.</creatorcontrib><description>Salinity is one of the major environmental factor that can greatly impact the growth, development, and productivity of barley. Our study aims to detect the natural phenotypic variation of morphological and physiological traits under both salinity and potassium nanoparticles (n-K) treatment. In addition to understanding the genetic basis of salt tolerance in barley is a critical aspect of plant breeding for stress resilience. Therefore, a foliar application of n-K was applied at the vegetative stage for 138 barley accessions to enhance salt stress resilience. Interestingly, barley accessions showed high significant increment under n-K treatment compared to saline soil. Based on genome-wide association studies (GWAS) analysis, causative alleles /reliable genomic regions were discovered underlying improved salt resilience through the application of potassium nanoparticles. On chromosome 2H, a highly significant QTN marker (A:C) was located at position 36,665,559 bp which is associated with APX, AsA, GSH, GS, WGS, and TKW under n-K treatment. Inside this region, our candidate gene is
HORVU.MOREX.r3.2HG0111480
that annotated as NAC domain protein. Allelic variation detected that the accessions carrying C allele showed higher antioxidants (APX, AsA, and GSH) and barley yield traits (GS, WGS, and TKW) than the accessions carrying A allele, suggesting a positive selection of the accessions carrying C allele that could be used to develop barley varieties with improved salt stress resilience.
Key message
Highlighting the importance of the role of potassium nanoparticles in plant tolerance to abiotic stresses, including salinity is the potential for genetic improvement of barley crop resilience through the enhancement of antioxidant defense systems.</description><identifier>ISSN: 0167-4412</identifier><identifier>ISSN: 1573-5028</identifier><identifier>EISSN: 1573-5028</identifier><identifier>DOI: 10.1007/s11103-024-01489-y</identifier><identifier>PMID: 39249621</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Abiotic stress ; Alleles ; Antioxidants ; Antioxidants - metabolism ; Barley ; Biochemistry ; Biomedical and Life Sciences ; Cereal crops ; Crop resilience ; Crop yield ; Environmental factors ; Foliar applications ; Genetic improvement ; Genome-wide association studies ; Genome-Wide Association Study ; Genomes ; Genomic analysis ; Hordeum - drug effects ; Hordeum - genetics ; Hordeum - physiology ; Life Sciences ; Nanoparticles ; Phenotype ; Phenotypic variations ; Plant Breeding ; Plant Pathology ; Plant Sciences ; Polymorphism, Single Nucleotide ; Positive selection ; Potassium ; Potassium - metabolism ; Quantitative Trait Loci ; Saline soils ; Salinity ; Salinity effects ; Salinity tolerance ; Salt ; Salt Stress - genetics ; Salt tolerance ; Salt Tolerance - genetics</subject><ispartof>Plant molecular biology, 2024-10, Vol.114 (5), p.97, Article 97</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-ecdd2fcb36e9f5ce0ab2610adb1ff12874d52ba639e708080f0bcd9b511d82fd3</cites><orcidid>0000-0001-7861-8933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11103-024-01489-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11103-024-01489-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39249621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thabet, Samar G.</creatorcontrib><creatorcontrib>Safhi, Fatmah Ahmed</creatorcontrib><creatorcontrib>Börner, Andreas</creatorcontrib><creatorcontrib>Alqudah, Ahmad M.</creatorcontrib><title>Genome-wide association scan reveals the reinforcing effect of nano-potassium in improving the yield and quality of salt-stressed barley via enhancing the antioxidant defense system</title><title>Plant molecular biology</title><addtitle>Plant Mol Biol</addtitle><addtitle>Plant Mol Biol</addtitle><description>Salinity is one of the major environmental factor that can greatly impact the growth, development, and productivity of barley. Our study aims to detect the natural phenotypic variation of morphological and physiological traits under both salinity and potassium nanoparticles (n-K) treatment. In addition to understanding the genetic basis of salt tolerance in barley is a critical aspect of plant breeding for stress resilience. Therefore, a foliar application of n-K was applied at the vegetative stage for 138 barley accessions to enhance salt stress resilience. Interestingly, barley accessions showed high significant increment under n-K treatment compared to saline soil. Based on genome-wide association studies (GWAS) analysis, causative alleles /reliable genomic regions were discovered underlying improved salt resilience through the application of potassium nanoparticles. On chromosome 2H, a highly significant QTN marker (A:C) was located at position 36,665,559 bp which is associated with APX, AsA, GSH, GS, WGS, and TKW under n-K treatment. Inside this region, our candidate gene is
HORVU.MOREX.r3.2HG0111480
that annotated as NAC domain protein. Allelic variation detected that the accessions carrying C allele showed higher antioxidants (APX, AsA, and GSH) and barley yield traits (GS, WGS, and TKW) than the accessions carrying A allele, suggesting a positive selection of the accessions carrying C allele that could be used to develop barley varieties with improved salt stress resilience.
Key message
Highlighting the importance of the role of potassium nanoparticles in plant tolerance to abiotic stresses, including salinity is the potential for genetic improvement of barley crop resilience through the enhancement of antioxidant defense systems.</description><subject>Abiotic stress</subject><subject>Alleles</subject><subject>Antioxidants</subject><subject>Antioxidants - metabolism</subject><subject>Barley</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cereal crops</subject><subject>Crop resilience</subject><subject>Crop yield</subject><subject>Environmental factors</subject><subject>Foliar applications</subject><subject>Genetic improvement</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genomic analysis</subject><subject>Hordeum - drug effects</subject><subject>Hordeum - genetics</subject><subject>Hordeum - physiology</subject><subject>Life Sciences</subject><subject>Nanoparticles</subject><subject>Phenotype</subject><subject>Phenotypic variations</subject><subject>Plant Breeding</subject><subject>Plant Pathology</subject><subject>Plant Sciences</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Positive selection</subject><subject>Potassium</subject><subject>Potassium - metabolism</subject><subject>Quantitative Trait Loci</subject><subject>Saline soils</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Salinity tolerance</subject><subject>Salt</subject><subject>Salt Stress - genetics</subject><subject>Salt tolerance</subject><subject>Salt Tolerance - genetics</subject><issn>0167-4412</issn><issn>1573-5028</issn><issn>1573-5028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFu3CAQhlHVqtmmfYEeKqReciEFbGP7WEVtUilSLunZwjAkRDZsGLyNH6zvVzabNFIPFYdB4vuGgZ-Qj4KfCs7bLyiE4BXjsmZc1F3P1ldkI5q2Yg2X3Wuy4UK1rK6FPCLvEO84L1ql3pKjqpd1r6TYkN_nEOIM7Je3QDViNF5nHwNFowNNsAM9Ic23UPY-uJiMDzcUnAOTaXQ06BDZNuai-mWmPlA_b1Pc7am9tXqYLNXB0vtFTz6vewn1lBnmBIhg6ajTBCvdeU0h3Opgnl0dyiQP3pZKLTgICBRXzDC_J29cmQs-PNVj8vP7t-uzC3Z5df7j7OslM7JRmYGxVjozVgp61xjgepRKcG1H4ZyQXVvbRo5aVT20vCvL8dHYfmyEsJ10tjomJ4e-5Un3C2AeZo8GpkkHiAsOleCSt7VqZUE__4PexSWFMt0jJYUqP14oeaBMiogJ3LBNftZpHQQf9qEOh1CHEurwGOqwFunTU-tlnMH-VZ5TLEB1ALAchRtIL3f_p-0fAJOykA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Thabet, Samar G.</creator><creator>Safhi, Fatmah Ahmed</creator><creator>Börner, Andreas</creator><creator>Alqudah, Ahmad M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7861-8933</orcidid></search><sort><creationdate>20241001</creationdate><title>Genome-wide association scan reveals the reinforcing effect of nano-potassium in improving the yield and quality of salt-stressed barley via enhancing the antioxidant defense system</title><author>Thabet, Samar G. ; Safhi, Fatmah Ahmed ; Börner, Andreas ; Alqudah, Ahmad M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-ecdd2fcb36e9f5ce0ab2610adb1ff12874d52ba639e708080f0bcd9b511d82fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abiotic stress</topic><topic>Alleles</topic><topic>Antioxidants</topic><topic>Antioxidants - metabolism</topic><topic>Barley</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cereal crops</topic><topic>Crop resilience</topic><topic>Crop yield</topic><topic>Environmental factors</topic><topic>Foliar applications</topic><topic>Genetic improvement</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genomic analysis</topic><topic>Hordeum - drug effects</topic><topic>Hordeum - genetics</topic><topic>Hordeum - physiology</topic><topic>Life Sciences</topic><topic>Nanoparticles</topic><topic>Phenotype</topic><topic>Phenotypic variations</topic><topic>Plant Breeding</topic><topic>Plant Pathology</topic><topic>Plant Sciences</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Positive selection</topic><topic>Potassium</topic><topic>Potassium - metabolism</topic><topic>Quantitative Trait Loci</topic><topic>Saline soils</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Salinity tolerance</topic><topic>Salt</topic><topic>Salt Stress - genetics</topic><topic>Salt tolerance</topic><topic>Salt Tolerance - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thabet, Samar G.</creatorcontrib><creatorcontrib>Safhi, Fatmah Ahmed</creatorcontrib><creatorcontrib>Börner, Andreas</creatorcontrib><creatorcontrib>Alqudah, Ahmad M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thabet, Samar G.</au><au>Safhi, Fatmah Ahmed</au><au>Börner, Andreas</au><au>Alqudah, Ahmad M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-wide association scan reveals the reinforcing effect of nano-potassium in improving the yield and quality of salt-stressed barley via enhancing the antioxidant defense system</atitle><jtitle>Plant molecular biology</jtitle><stitle>Plant Mol Biol</stitle><addtitle>Plant Mol Biol</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>114</volume><issue>5</issue><spage>97</spage><pages>97-</pages><artnum>97</artnum><issn>0167-4412</issn><issn>1573-5028</issn><eissn>1573-5028</eissn><abstract>Salinity is one of the major environmental factor that can greatly impact the growth, development, and productivity of barley. Our study aims to detect the natural phenotypic variation of morphological and physiological traits under both salinity and potassium nanoparticles (n-K) treatment. In addition to understanding the genetic basis of salt tolerance in barley is a critical aspect of plant breeding for stress resilience. Therefore, a foliar application of n-K was applied at the vegetative stage for 138 barley accessions to enhance salt stress resilience. Interestingly, barley accessions showed high significant increment under n-K treatment compared to saline soil. Based on genome-wide association studies (GWAS) analysis, causative alleles /reliable genomic regions were discovered underlying improved salt resilience through the application of potassium nanoparticles. On chromosome 2H, a highly significant QTN marker (A:C) was located at position 36,665,559 bp which is associated with APX, AsA, GSH, GS, WGS, and TKW under n-K treatment. Inside this region, our candidate gene is
HORVU.MOREX.r3.2HG0111480
that annotated as NAC domain protein. Allelic variation detected that the accessions carrying C allele showed higher antioxidants (APX, AsA, and GSH) and barley yield traits (GS, WGS, and TKW) than the accessions carrying A allele, suggesting a positive selection of the accessions carrying C allele that could be used to develop barley varieties with improved salt stress resilience.
Key message
Highlighting the importance of the role of potassium nanoparticles in plant tolerance to abiotic stresses, including salinity is the potential for genetic improvement of barley crop resilience through the enhancement of antioxidant defense systems.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>39249621</pmid><doi>10.1007/s11103-024-01489-y</doi><orcidid>https://orcid.org/0000-0001-7861-8933</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-4412 |
ispartof | Plant molecular biology, 2024-10, Vol.114 (5), p.97, Article 97 |
issn | 0167-4412 1573-5028 1573-5028 |
language | eng |
recordid | cdi_proquest_miscellaneous_3102074672 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Abiotic stress Alleles Antioxidants Antioxidants - metabolism Barley Biochemistry Biomedical and Life Sciences Cereal crops Crop resilience Crop yield Environmental factors Foliar applications Genetic improvement Genome-wide association studies Genome-Wide Association Study Genomes Genomic analysis Hordeum - drug effects Hordeum - genetics Hordeum - physiology Life Sciences Nanoparticles Phenotype Phenotypic variations Plant Breeding Plant Pathology Plant Sciences Polymorphism, Single Nucleotide Positive selection Potassium Potassium - metabolism Quantitative Trait Loci Saline soils Salinity Salinity effects Salinity tolerance Salt Salt Stress - genetics Salt tolerance Salt Tolerance - genetics |
title | Genome-wide association scan reveals the reinforcing effect of nano-potassium in improving the yield and quality of salt-stressed barley via enhancing the antioxidant defense system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-wide%20association%20scan%20reveals%20the%20reinforcing%20effect%20of%20nano-potassium%20in%20improving%20the%20yield%20and%20quality%20of%20salt-stressed%20barley%20via%20enhancing%20the%20antioxidant%20defense%20system&rft.jtitle=Plant%20molecular%20biology&rft.au=Thabet,%20Samar%20G.&rft.date=2024-10-01&rft.volume=114&rft.issue=5&rft.spage=97&rft.pages=97-&rft.artnum=97&rft.issn=0167-4412&rft.eissn=1573-5028&rft_id=info:doi/10.1007/s11103-024-01489-y&rft_dat=%3Cproquest_cross%3E3102216496%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102216496&rft_id=info:pmid/39249621&rfr_iscdi=true |