Functional Analysis of the Channelrhodopsin Genes from the Green Algae of the White Sea Basin

Optogenetics, the method of light-controlled regulation of cellular processes is based on the use of the channelrhodopsins that directly generate photoinduced currents. Most of the channelrhodopsin genes have been identified in the green microalgae Chlorophyta, and the demand for increasing the numb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Moscow) 2024-08, Vol.89 (8), p.1392-1401
Hauptverfasser: Karpova, Olga V., Vinogradova, Elizaveta N., Moisenovich, Anastasiya M., Pustovit, Oksana B., Ramonova, Alla A., Abramochkin, Denis V., Lobakova, Elena S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1401
container_issue 8
container_start_page 1392
container_title Biochemistry (Moscow)
container_volume 89
creator Karpova, Olga V.
Vinogradova, Elizaveta N.
Moisenovich, Anastasiya M.
Pustovit, Oksana B.
Ramonova, Alla A.
Abramochkin, Denis V.
Lobakova, Elena S.
description Optogenetics, the method of light-controlled regulation of cellular processes is based on the use of the channelrhodopsins that directly generate photoinduced currents. Most of the channelrhodopsin genes have been identified in the green microalgae Chlorophyta, and the demand for increasing the number of functionally characterized channelrhodopsins and the diversity of their photochemical parameters keeps growing. We performed the expression analysis of cation channelrhodopsin (CCR) genes in natural isolates of microalgae of the genera Haematococcus and Bracteacoccus from the unique Arctic Circle region. The identified full-length CCR transcript of H. lacustris is the product of alternative splicing and encodes the Hl98CCR2 protein with no photochemical activity. The 5′-partial fragment of the B. aggregatus CCR transcript encodes the Ba34CCR protein containing a conserved TM1-TM7 membrane domain and a short cytosolic fragment. Upon heterologous expression of the TM1-TM7 fragment in CHO-K1 cell culture, light-dependent current generation was observed with the parameters corresponding to those of the CCR. The first discovered functional channelrhodopsin of Bracteacoccus has no close CCR homologues and may be of interest as a candidate for optogenetics.
doi_str_mv 10.1134/S0006297924080030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3102070505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102070505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-74346e84c69d97cfbae3cfe644b8e10525310e6058ee3b964614a2c60221033b3</originalsourceid><addsrcrecordid>eNp1kE9PwjAYhxujEUQ_gBfTxIuX6ds_K9sRiaAJiQc0nszSjXcwMlpstwPf3iKgicZLm-b3PG_bHyGXDG4ZE_JuCgCKp_2US0gABByRLlOQRAIkHJPuNo62eYeceb8MRw6pOCUdEYxYxrxL3ketKZrKGl3TQVg2vvLUlrRZIB0utDFYu4Wd2bWvDB2jQU9LZ1df-dghGjqo5xoPytuiapBOUdN7HYxzclLq2uPFfu-R19HDy_AxmjyPn4aDSVSE1zVRXwqpMJGFSmdpvyhzjaIoUUmZJ8gg5rFggAriBFHkqZKKSc0LBZwzECIXPXKzm7t29qNF32SryhdY19qgbX0WdA59iCEO6PUvdGlbF34eKEiTVHAlRKDYjiqc9d5hma1dtdJukzHItt1nf7oPztV-cpuvcPZtHMoOAN8BPkRmju7n6v-nfgI9w4r3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098932633</pqid></control><display><type>article</type><title>Functional Analysis of the Channelrhodopsin Genes from the Green Algae of the White Sea Basin</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Karpova, Olga V. ; Vinogradova, Elizaveta N. ; Moisenovich, Anastasiya M. ; Pustovit, Oksana B. ; Ramonova, Alla A. ; Abramochkin, Denis V. ; Lobakova, Elena S.</creator><creatorcontrib>Karpova, Olga V. ; Vinogradova, Elizaveta N. ; Moisenovich, Anastasiya M. ; Pustovit, Oksana B. ; Ramonova, Alla A. ; Abramochkin, Denis V. ; Lobakova, Elena S.</creatorcontrib><description>Optogenetics, the method of light-controlled regulation of cellular processes is based on the use of the channelrhodopsins that directly generate photoinduced currents. Most of the channelrhodopsin genes have been identified in the green microalgae Chlorophyta, and the demand for increasing the number of functionally characterized channelrhodopsins and the diversity of their photochemical parameters keeps growing. We performed the expression analysis of cation channelrhodopsin (CCR) genes in natural isolates of microalgae of the genera Haematococcus and Bracteacoccus from the unique Arctic Circle region. The identified full-length CCR transcript of H. lacustris is the product of alternative splicing and encodes the Hl98CCR2 protein with no photochemical activity. The 5′-partial fragment of the B. aggregatus CCR transcript encodes the Ba34CCR protein containing a conserved TM1-TM7 membrane domain and a short cytosolic fragment. Upon heterologous expression of the TM1-TM7 fragment in CHO-K1 cell culture, light-dependent current generation was observed with the parameters corresponding to those of the CCR. The first discovered functional channelrhodopsin of Bracteacoccus has no close CCR homologues and may be of interest as a candidate for optogenetics.</description><identifier>ISSN: 0006-2979</identifier><identifier>ISSN: 1608-3040</identifier><identifier>EISSN: 1608-3040</identifier><identifier>DOI: 10.1134/S0006297924080030</identifier><identifier>PMID: 39245452</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algae ; Alternative splicing ; Animals ; Aquatic microorganisms ; Aquatic plants ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Bioorganic Chemistry ; Bracteacoccus ; Cell culture ; Channelrhodopsins - genetics ; Channelrhodopsins - metabolism ; Chlorophyta - genetics ; Chlorophyta - metabolism ; CHO Cells ; Cricetulus ; Demand analysis ; Functional analysis ; Gene regulation ; Genes ; Genetics ; Information processing ; Life Sciences ; Light ; Microalgae ; Microbiology ; Optics ; Optogenetics - methods ; Parameter identification ; Photochemicals ; Photochemistry ; Protein expression ; Proteins ; Sea currents</subject><ispartof>Biochemistry (Moscow), 2024-08, Vol.89 (8), p.1392-1401</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c297t-74346e84c69d97cfbae3cfe644b8e10525310e6058ee3b964614a2c60221033b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0006297924080030$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0006297924080030$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39245452$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karpova, Olga V.</creatorcontrib><creatorcontrib>Vinogradova, Elizaveta N.</creatorcontrib><creatorcontrib>Moisenovich, Anastasiya M.</creatorcontrib><creatorcontrib>Pustovit, Oksana B.</creatorcontrib><creatorcontrib>Ramonova, Alla A.</creatorcontrib><creatorcontrib>Abramochkin, Denis V.</creatorcontrib><creatorcontrib>Lobakova, Elena S.</creatorcontrib><title>Functional Analysis of the Channelrhodopsin Genes from the Green Algae of the White Sea Basin</title><title>Biochemistry (Moscow)</title><addtitle>Biochemistry Moscow</addtitle><addtitle>Biochemistry (Mosc)</addtitle><description>Optogenetics, the method of light-controlled regulation of cellular processes is based on the use of the channelrhodopsins that directly generate photoinduced currents. Most of the channelrhodopsin genes have been identified in the green microalgae Chlorophyta, and the demand for increasing the number of functionally characterized channelrhodopsins and the diversity of their photochemical parameters keeps growing. We performed the expression analysis of cation channelrhodopsin (CCR) genes in natural isolates of microalgae of the genera Haematococcus and Bracteacoccus from the unique Arctic Circle region. The identified full-length CCR transcript of H. lacustris is the product of alternative splicing and encodes the Hl98CCR2 protein with no photochemical activity. The 5′-partial fragment of the B. aggregatus CCR transcript encodes the Ba34CCR protein containing a conserved TM1-TM7 membrane domain and a short cytosolic fragment. Upon heterologous expression of the TM1-TM7 fragment in CHO-K1 cell culture, light-dependent current generation was observed with the parameters corresponding to those of the CCR. The first discovered functional channelrhodopsin of Bracteacoccus has no close CCR homologues and may be of interest as a candidate for optogenetics.</description><subject>Algae</subject><subject>Alternative splicing</subject><subject>Animals</subject><subject>Aquatic microorganisms</subject><subject>Aquatic plants</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bioorganic Chemistry</subject><subject>Bracteacoccus</subject><subject>Cell culture</subject><subject>Channelrhodopsins - genetics</subject><subject>Channelrhodopsins - metabolism</subject><subject>Chlorophyta - genetics</subject><subject>Chlorophyta - metabolism</subject><subject>CHO Cells</subject><subject>Cricetulus</subject><subject>Demand analysis</subject><subject>Functional analysis</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Genetics</subject><subject>Information processing</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Microalgae</subject><subject>Microbiology</subject><subject>Optics</subject><subject>Optogenetics - methods</subject><subject>Parameter identification</subject><subject>Photochemicals</subject><subject>Photochemistry</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Sea currents</subject><issn>0006-2979</issn><issn>1608-3040</issn><issn>1608-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp1kE9PwjAYhxujEUQ_gBfTxIuX6ds_K9sRiaAJiQc0nszSjXcwMlpstwPf3iKgicZLm-b3PG_bHyGXDG4ZE_JuCgCKp_2US0gABByRLlOQRAIkHJPuNo62eYeceb8MRw6pOCUdEYxYxrxL3ketKZrKGl3TQVg2vvLUlrRZIB0utDFYu4Wd2bWvDB2jQU9LZ1df-dghGjqo5xoPytuiapBOUdN7HYxzclLq2uPFfu-R19HDy_AxmjyPn4aDSVSE1zVRXwqpMJGFSmdpvyhzjaIoUUmZJ8gg5rFggAriBFHkqZKKSc0LBZwzECIXPXKzm7t29qNF32SryhdY19qgbX0WdA59iCEO6PUvdGlbF34eKEiTVHAlRKDYjiqc9d5hma1dtdJukzHItt1nf7oPztV-cpuvcPZtHMoOAN8BPkRmju7n6v-nfgI9w4r3</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Karpova, Olga V.</creator><creator>Vinogradova, Elizaveta N.</creator><creator>Moisenovich, Anastasiya M.</creator><creator>Pustovit, Oksana B.</creator><creator>Ramonova, Alla A.</creator><creator>Abramochkin, Denis V.</creator><creator>Lobakova, Elena S.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>7X8</scope></search><sort><creationdate>20240801</creationdate><title>Functional Analysis of the Channelrhodopsin Genes from the Green Algae of the White Sea Basin</title><author>Karpova, Olga V. ; Vinogradova, Elizaveta N. ; Moisenovich, Anastasiya M. ; Pustovit, Oksana B. ; Ramonova, Alla A. ; Abramochkin, Denis V. ; Lobakova, Elena S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-74346e84c69d97cfbae3cfe644b8e10525310e6058ee3b964614a2c60221033b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algae</topic><topic>Alternative splicing</topic><topic>Animals</topic><topic>Aquatic microorganisms</topic><topic>Aquatic plants</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bioorganic Chemistry</topic><topic>Bracteacoccus</topic><topic>Cell culture</topic><topic>Channelrhodopsins - genetics</topic><topic>Channelrhodopsins - metabolism</topic><topic>Chlorophyta - genetics</topic><topic>Chlorophyta - metabolism</topic><topic>CHO Cells</topic><topic>Cricetulus</topic><topic>Demand analysis</topic><topic>Functional analysis</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Genetics</topic><topic>Information processing</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Microalgae</topic><topic>Microbiology</topic><topic>Optics</topic><topic>Optogenetics - methods</topic><topic>Parameter identification</topic><topic>Photochemicals</topic><topic>Photochemistry</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Sea currents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karpova, Olga V.</creatorcontrib><creatorcontrib>Vinogradova, Elizaveta N.</creatorcontrib><creatorcontrib>Moisenovich, Anastasiya M.</creatorcontrib><creatorcontrib>Pustovit, Oksana B.</creatorcontrib><creatorcontrib>Ramonova, Alla A.</creatorcontrib><creatorcontrib>Abramochkin, Denis V.</creatorcontrib><creatorcontrib>Lobakova, Elena S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Moscow)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karpova, Olga V.</au><au>Vinogradova, Elizaveta N.</au><au>Moisenovich, Anastasiya M.</au><au>Pustovit, Oksana B.</au><au>Ramonova, Alla A.</au><au>Abramochkin, Denis V.</au><au>Lobakova, Elena S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Analysis of the Channelrhodopsin Genes from the Green Algae of the White Sea Basin</atitle><jtitle>Biochemistry (Moscow)</jtitle><stitle>Biochemistry Moscow</stitle><addtitle>Biochemistry (Mosc)</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>89</volume><issue>8</issue><spage>1392</spage><epage>1401</epage><pages>1392-1401</pages><issn>0006-2979</issn><issn>1608-3040</issn><eissn>1608-3040</eissn><abstract>Optogenetics, the method of light-controlled regulation of cellular processes is based on the use of the channelrhodopsins that directly generate photoinduced currents. Most of the channelrhodopsin genes have been identified in the green microalgae Chlorophyta, and the demand for increasing the number of functionally characterized channelrhodopsins and the diversity of their photochemical parameters keeps growing. We performed the expression analysis of cation channelrhodopsin (CCR) genes in natural isolates of microalgae of the genera Haematococcus and Bracteacoccus from the unique Arctic Circle region. The identified full-length CCR transcript of H. lacustris is the product of alternative splicing and encodes the Hl98CCR2 protein with no photochemical activity. The 5′-partial fragment of the B. aggregatus CCR transcript encodes the Ba34CCR protein containing a conserved TM1-TM7 membrane domain and a short cytosolic fragment. Upon heterologous expression of the TM1-TM7 fragment in CHO-K1 cell culture, light-dependent current generation was observed with the parameters corresponding to those of the CCR. The first discovered functional channelrhodopsin of Bracteacoccus has no close CCR homologues and may be of interest as a candidate for optogenetics.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><pmid>39245452</pmid><doi>10.1134/S0006297924080030</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-2979
ispartof Biochemistry (Moscow), 2024-08, Vol.89 (8), p.1392-1401
issn 0006-2979
1608-3040
1608-3040
language eng
recordid cdi_proquest_miscellaneous_3102070505
source MEDLINE; SpringerLink Journals
subjects Algae
Alternative splicing
Animals
Aquatic microorganisms
Aquatic plants
Biochemistry
Biomedical and Life Sciences
Biomedicine
Bioorganic Chemistry
Bracteacoccus
Cell culture
Channelrhodopsins - genetics
Channelrhodopsins - metabolism
Chlorophyta - genetics
Chlorophyta - metabolism
CHO Cells
Cricetulus
Demand analysis
Functional analysis
Gene regulation
Genes
Genetics
Information processing
Life Sciences
Light
Microalgae
Microbiology
Optics
Optogenetics - methods
Parameter identification
Photochemicals
Photochemistry
Protein expression
Proteins
Sea currents
title Functional Analysis of the Channelrhodopsin Genes from the Green Algae of the White Sea Basin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A49%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Analysis%20of%20the%20Channelrhodopsin%20Genes%20from%20the%20Green%20Algae%20of%20the%20White%20Sea%20Basin&rft.jtitle=Biochemistry%20(Moscow)&rft.au=Karpova,%20Olga%20V.&rft.date=2024-08-01&rft.volume=89&rft.issue=8&rft.spage=1392&rft.epage=1401&rft.pages=1392-1401&rft.issn=0006-2979&rft.eissn=1608-3040&rft_id=info:doi/10.1134/S0006297924080030&rft_dat=%3Cproquest_cross%3E3102070505%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098932633&rft_id=info:pmid/39245452&rfr_iscdi=true