Elucidation of PGPR-responsive OsNAM2 regulates salt tolerance in Arabidopsis by AFP2 and SUS protein interaction
This study investigates the molecular mechanisms underlying salt stress responses in plants, focusing on the regulatory roles of OsNAM2, a gene influenced by the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens (SN13). The study examines how SN13-modulated OsNAM2 enhances salt tolera...
Gespeichert in:
Veröffentlicht in: | Microbiological research 2024-12, Vol.289, p.127890, Article 127890 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 127890 |
container_title | Microbiological research |
container_volume | 289 |
creator | Joshi, Harshita Harter, Klaus Rohr, Leander Mishra, Shashank Kumar Chauhan, Puneet Singh |
description | This study investigates the molecular mechanisms underlying salt stress responses in plants, focusing on the regulatory roles of OsNAM2, a gene influenced by the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens (SN13). The study examines how SN13-modulated OsNAM2 enhances salt tolerance in Arabidopsis through physiological, biochemical, and molecular analyses. Overexpression of OsNAM2, especially with SN13 inoculation, improves germination, seedling growth, root length, and biomass under high NaCl concentrations compared to wild-type plants, indicating a synergistic effect. OsNAM2 overexpression enhances relative water content, reduces electrolyte leakage and malondialdehyde accumulation, and increases proline content, suggesting better membrane integrity and stress endurance. Furthermore, SN13 and OsNAM2 overexpression modulates essential metabolic genes involved in glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle, facilitating metabolic adjustments crucial for salt stress adaptation. The interaction of OsNAM2 with SUS, facilitated by SN13, suggests enhanced sucrose metabolism efficiency, providing substrates for protective responses. Additionally, OsNAM2 plays a regulatory role in the ABA signaling pathway through significant protein-protein interactions like with AFP2. This study highlights the intricate interplay between SN13-responsive OsNAM2 and key signaling pathways, suggesting strategies for enhancing crop salt tolerance through targeted genetic and microbial interventions
•Overexpression of SN13 responsive OsNAM2 significantly improves overall plant morphology under salt stress.•SN13 further amplifies the beneficial effects of OsNAM2, maintain Na+/K+ homeostasis and stress resilience.•SN13 responsive OsNAM2 overexpression leads to upregulating essential ABA-responsive genes.•Demonstrate significant interactions between SN13 responsive OsNAM2 and AFP2 and SUS.•Salt-tolerant crops can be developed by utilizing the OsNAM2 gene. |
doi_str_mv | 10.1016/j.micres.2024.127890 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3101794640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S094450132400291X</els_id><sourcerecordid>3101794640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-bbeba458ad58147e83b9bd11b0780a86d186f80f3d7d12d4fd0c7bd725467cba3</originalsourceid><addsrcrecordid>eNp9kMtu2zAQRYmiQe06_YOi4LIbOSRFSdSmgBHEaYAkNpJmTfAxKmjIok1SAfz3oaG0y6xmc-7cmYPQd0qWlND6arfcOxMgLhlhfElZI1ryCc1pTUVBalZ-RnPScl5UhJYz9DXGHSGUt4J9QbOyZbysRTVHx5t-NM6q5PyAfYe3t9unIm89-CG6V8Cb-Lh6YDjA37FXCSKOqk84-R6CGgxgN-BVUNpZf4guYn3Cq_WWYTVY_PzyjA_BJ8iMG1IOmHPLJbroVB_h2_tcoJf1zZ_r38X95vbuenVfGMZpKrQGrXgllK0E5Q2IUrfaUqpJI4gStaWi7gTpSttYyizvLDGNtg2reN0YrcoF-jntzTccR4hJ7l000PdqAD9GWWaLTctrTjLKJ9QEH2OATh6C26twkpTIs2y5k5NseZYtJ9k59uO9YdR7sP9D_-xm4NcEQP7z1UGQ0TjI2qwLYJK03n3c8Ab7LZKB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101794640</pqid></control><display><type>article</type><title>Elucidation of PGPR-responsive OsNAM2 regulates salt tolerance in Arabidopsis by AFP2 and SUS protein interaction</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Joshi, Harshita ; Harter, Klaus ; Rohr, Leander ; Mishra, Shashank Kumar ; Chauhan, Puneet Singh</creator><creatorcontrib>Joshi, Harshita ; Harter, Klaus ; Rohr, Leander ; Mishra, Shashank Kumar ; Chauhan, Puneet Singh</creatorcontrib><description>This study investigates the molecular mechanisms underlying salt stress responses in plants, focusing on the regulatory roles of OsNAM2, a gene influenced by the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens (SN13). The study examines how SN13-modulated OsNAM2 enhances salt tolerance in Arabidopsis through physiological, biochemical, and molecular analyses. Overexpression of OsNAM2, especially with SN13 inoculation, improves germination, seedling growth, root length, and biomass under high NaCl concentrations compared to wild-type plants, indicating a synergistic effect. OsNAM2 overexpression enhances relative water content, reduces electrolyte leakage and malondialdehyde accumulation, and increases proline content, suggesting better membrane integrity and stress endurance. Furthermore, SN13 and OsNAM2 overexpression modulates essential metabolic genes involved in glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle, facilitating metabolic adjustments crucial for salt stress adaptation. The interaction of OsNAM2 with SUS, facilitated by SN13, suggests enhanced sucrose metabolism efficiency, providing substrates for protective responses. Additionally, OsNAM2 plays a regulatory role in the ABA signaling pathway through significant protein-protein interactions like with AFP2. This study highlights the intricate interplay between SN13-responsive OsNAM2 and key signaling pathways, suggesting strategies for enhancing crop salt tolerance through targeted genetic and microbial interventions
•Overexpression of SN13 responsive OsNAM2 significantly improves overall plant morphology under salt stress.•SN13 further amplifies the beneficial effects of OsNAM2, maintain Na+/K+ homeostasis and stress resilience.•SN13 responsive OsNAM2 overexpression leads to upregulating essential ABA-responsive genes.•Demonstrate significant interactions between SN13 responsive OsNAM2 and AFP2 and SUS.•Salt-tolerant crops can be developed by utilizing the OsNAM2 gene.</description><identifier>ISSN: 0944-5013</identifier><identifier>ISSN: 1618-0623</identifier><identifier>EISSN: 1618-0623</identifier><identifier>DOI: 10.1016/j.micres.2024.127890</identifier><identifier>PMID: 39243685</identifier><language>eng</language><publisher>Germany: Elsevier GmbH</publisher><subject>Abscisic Acid - metabolism ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis - physiology ; Bacillus amyloliquefaciens - genetics ; Bacillus amyloliquefaciens - metabolism ; Bacillus amyloliquefaciens - physiology ; BIFC ; FRET-FLIM ; Gene expression ; Gene Expression Regulation, Plant ; Germination ; Metabolism ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Roots - genetics ; Plant Roots - growth & development ; Plant Roots - metabolism ; Plant Roots - microbiology ; Plants, Genetically Modified - genetics ; PPI ; Proline - metabolism ; Salt Stress ; Salt Tolerance - genetics ; Seedlings - genetics ; Seedlings - growth & development ; Signal Transduction ; Sodium Chloride - metabolism</subject><ispartof>Microbiological research, 2024-12, Vol.289, p.127890, Article 127890</ispartof><rights>2024 Elsevier GmbH</rights><rights>Copyright © 2024 Elsevier GmbH. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-bbeba458ad58147e83b9bd11b0780a86d186f80f3d7d12d4fd0c7bd725467cba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.micres.2024.127890$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39243685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Joshi, Harshita</creatorcontrib><creatorcontrib>Harter, Klaus</creatorcontrib><creatorcontrib>Rohr, Leander</creatorcontrib><creatorcontrib>Mishra, Shashank Kumar</creatorcontrib><creatorcontrib>Chauhan, Puneet Singh</creatorcontrib><title>Elucidation of PGPR-responsive OsNAM2 regulates salt tolerance in Arabidopsis by AFP2 and SUS protein interaction</title><title>Microbiological research</title><addtitle>Microbiol Res</addtitle><description>This study investigates the molecular mechanisms underlying salt stress responses in plants, focusing on the regulatory roles of OsNAM2, a gene influenced by the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens (SN13). The study examines how SN13-modulated OsNAM2 enhances salt tolerance in Arabidopsis through physiological, biochemical, and molecular analyses. Overexpression of OsNAM2, especially with SN13 inoculation, improves germination, seedling growth, root length, and biomass under high NaCl concentrations compared to wild-type plants, indicating a synergistic effect. OsNAM2 overexpression enhances relative water content, reduces electrolyte leakage and malondialdehyde accumulation, and increases proline content, suggesting better membrane integrity and stress endurance. Furthermore, SN13 and OsNAM2 overexpression modulates essential metabolic genes involved in glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle, facilitating metabolic adjustments crucial for salt stress adaptation. The interaction of OsNAM2 with SUS, facilitated by SN13, suggests enhanced sucrose metabolism efficiency, providing substrates for protective responses. Additionally, OsNAM2 plays a regulatory role in the ABA signaling pathway through significant protein-protein interactions like with AFP2. This study highlights the intricate interplay between SN13-responsive OsNAM2 and key signaling pathways, suggesting strategies for enhancing crop salt tolerance through targeted genetic and microbial interventions
•Overexpression of SN13 responsive OsNAM2 significantly improves overall plant morphology under salt stress.•SN13 further amplifies the beneficial effects of OsNAM2, maintain Na+/K+ homeostasis and stress resilience.•SN13 responsive OsNAM2 overexpression leads to upregulating essential ABA-responsive genes.•Demonstrate significant interactions between SN13 responsive OsNAM2 and AFP2 and SUS.•Salt-tolerant crops can be developed by utilizing the OsNAM2 gene.</description><subject>Abscisic Acid - metabolism</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - physiology</subject><subject>Bacillus amyloliquefaciens - genetics</subject><subject>Bacillus amyloliquefaciens - metabolism</subject><subject>Bacillus amyloliquefaciens - physiology</subject><subject>BIFC</subject><subject>FRET-FLIM</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Germination</subject><subject>Metabolism</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - growth & development</subject><subject>Plant Roots - metabolism</subject><subject>Plant Roots - microbiology</subject><subject>Plants, Genetically Modified - genetics</subject><subject>PPI</subject><subject>Proline - metabolism</subject><subject>Salt Stress</subject><subject>Salt Tolerance - genetics</subject><subject>Seedlings - genetics</subject><subject>Seedlings - growth & development</subject><subject>Signal Transduction</subject><subject>Sodium Chloride - metabolism</subject><issn>0944-5013</issn><issn>1618-0623</issn><issn>1618-0623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtu2zAQRYmiQe06_YOi4LIbOSRFSdSmgBHEaYAkNpJmTfAxKmjIok1SAfz3oaG0y6xmc-7cmYPQd0qWlND6arfcOxMgLhlhfElZI1ryCc1pTUVBalZ-RnPScl5UhJYz9DXGHSGUt4J9QbOyZbysRTVHx5t-NM6q5PyAfYe3t9unIm89-CG6V8Cb-Lh6YDjA37FXCSKOqk84-R6CGgxgN-BVUNpZf4guYn3Cq_WWYTVY_PzyjA_BJ8iMG1IOmHPLJbroVB_h2_tcoJf1zZ_r38X95vbuenVfGMZpKrQGrXgllK0E5Q2IUrfaUqpJI4gStaWi7gTpSttYyizvLDGNtg2reN0YrcoF-jntzTccR4hJ7l000PdqAD9GWWaLTctrTjLKJ9QEH2OATh6C26twkpTIs2y5k5NseZYtJ9k59uO9YdR7sP9D_-xm4NcEQP7z1UGQ0TjI2qwLYJK03n3c8Ab7LZKB</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Joshi, Harshita</creator><creator>Harter, Klaus</creator><creator>Rohr, Leander</creator><creator>Mishra, Shashank Kumar</creator><creator>Chauhan, Puneet Singh</creator><general>Elsevier GmbH</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202412</creationdate><title>Elucidation of PGPR-responsive OsNAM2 regulates salt tolerance in Arabidopsis by AFP2 and SUS protein interaction</title><author>Joshi, Harshita ; Harter, Klaus ; Rohr, Leander ; Mishra, Shashank Kumar ; Chauhan, Puneet Singh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-bbeba458ad58147e83b9bd11b0780a86d186f80f3d7d12d4fd0c7bd725467cba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abscisic Acid - metabolism</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - physiology</topic><topic>Bacillus amyloliquefaciens - genetics</topic><topic>Bacillus amyloliquefaciens - metabolism</topic><topic>Bacillus amyloliquefaciens - physiology</topic><topic>BIFC</topic><topic>FRET-FLIM</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Germination</topic><topic>Metabolism</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - growth & development</topic><topic>Plant Roots - metabolism</topic><topic>Plant Roots - microbiology</topic><topic>Plants, Genetically Modified - genetics</topic><topic>PPI</topic><topic>Proline - metabolism</topic><topic>Salt Stress</topic><topic>Salt Tolerance - genetics</topic><topic>Seedlings - genetics</topic><topic>Seedlings - growth & development</topic><topic>Signal Transduction</topic><topic>Sodium Chloride - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joshi, Harshita</creatorcontrib><creatorcontrib>Harter, Klaus</creatorcontrib><creatorcontrib>Rohr, Leander</creatorcontrib><creatorcontrib>Mishra, Shashank Kumar</creatorcontrib><creatorcontrib>Chauhan, Puneet Singh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Microbiological research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joshi, Harshita</au><au>Harter, Klaus</au><au>Rohr, Leander</au><au>Mishra, Shashank Kumar</au><au>Chauhan, Puneet Singh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidation of PGPR-responsive OsNAM2 regulates salt tolerance in Arabidopsis by AFP2 and SUS protein interaction</atitle><jtitle>Microbiological research</jtitle><addtitle>Microbiol Res</addtitle><date>2024-12</date><risdate>2024</risdate><volume>289</volume><spage>127890</spage><pages>127890-</pages><artnum>127890</artnum><issn>0944-5013</issn><issn>1618-0623</issn><eissn>1618-0623</eissn><abstract>This study investigates the molecular mechanisms underlying salt stress responses in plants, focusing on the regulatory roles of OsNAM2, a gene influenced by the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens (SN13). The study examines how SN13-modulated OsNAM2 enhances salt tolerance in Arabidopsis through physiological, biochemical, and molecular analyses. Overexpression of OsNAM2, especially with SN13 inoculation, improves germination, seedling growth, root length, and biomass under high NaCl concentrations compared to wild-type plants, indicating a synergistic effect. OsNAM2 overexpression enhances relative water content, reduces electrolyte leakage and malondialdehyde accumulation, and increases proline content, suggesting better membrane integrity and stress endurance. Furthermore, SN13 and OsNAM2 overexpression modulates essential metabolic genes involved in glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle, facilitating metabolic adjustments crucial for salt stress adaptation. The interaction of OsNAM2 with SUS, facilitated by SN13, suggests enhanced sucrose metabolism efficiency, providing substrates for protective responses. Additionally, OsNAM2 plays a regulatory role in the ABA signaling pathway through significant protein-protein interactions like with AFP2. This study highlights the intricate interplay between SN13-responsive OsNAM2 and key signaling pathways, suggesting strategies for enhancing crop salt tolerance through targeted genetic and microbial interventions
•Overexpression of SN13 responsive OsNAM2 significantly improves overall plant morphology under salt stress.•SN13 further amplifies the beneficial effects of OsNAM2, maintain Na+/K+ homeostasis and stress resilience.•SN13 responsive OsNAM2 overexpression leads to upregulating essential ABA-responsive genes.•Demonstrate significant interactions between SN13 responsive OsNAM2 and AFP2 and SUS.•Salt-tolerant crops can be developed by utilizing the OsNAM2 gene.</abstract><cop>Germany</cop><pub>Elsevier GmbH</pub><pmid>39243685</pmid><doi>10.1016/j.micres.2024.127890</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-5013 |
ispartof | Microbiological research, 2024-12, Vol.289, p.127890, Article 127890 |
issn | 0944-5013 1618-0623 1618-0623 |
language | eng |
recordid | cdi_proquest_miscellaneous_3101794640 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Abscisic Acid - metabolism Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis - physiology Bacillus amyloliquefaciens - genetics Bacillus amyloliquefaciens - metabolism Bacillus amyloliquefaciens - physiology BIFC FRET-FLIM Gene expression Gene Expression Regulation, Plant Germination Metabolism Plant Proteins - genetics Plant Proteins - metabolism Plant Roots - genetics Plant Roots - growth & development Plant Roots - metabolism Plant Roots - microbiology Plants, Genetically Modified - genetics PPI Proline - metabolism Salt Stress Salt Tolerance - genetics Seedlings - genetics Seedlings - growth & development Signal Transduction Sodium Chloride - metabolism |
title | Elucidation of PGPR-responsive OsNAM2 regulates salt tolerance in Arabidopsis by AFP2 and SUS protein interaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A53%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidation%20of%20PGPR-responsive%20OsNAM2%20regulates%20salt%20tolerance%20in%20Arabidopsis%20by%20AFP2%20and%20SUS%20protein%20interaction&rft.jtitle=Microbiological%20research&rft.au=Joshi,%20Harshita&rft.date=2024-12&rft.volume=289&rft.spage=127890&rft.pages=127890-&rft.artnum=127890&rft.issn=0944-5013&rft.eissn=1618-0623&rft_id=info:doi/10.1016/j.micres.2024.127890&rft_dat=%3Cproquest_cross%3E3101794640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3101794640&rft_id=info:pmid/39243685&rft_els_id=S094450132400291X&rfr_iscdi=true |