Elucidation of PGPR-responsive OsNAM2 regulates salt tolerance in Arabidopsis by AFP2 and SUS protein interaction

This study investigates the molecular mechanisms underlying salt stress responses in plants, focusing on the regulatory roles of OsNAM2, a gene influenced by the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens (SN13). The study examines how SN13-modulated OsNAM2 enhances salt tolera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbiological research 2024-12, Vol.289, p.127890, Article 127890
Hauptverfasser: Joshi, Harshita, Harter, Klaus, Rohr, Leander, Mishra, Shashank Kumar, Chauhan, Puneet Singh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 127890
container_title Microbiological research
container_volume 289
creator Joshi, Harshita
Harter, Klaus
Rohr, Leander
Mishra, Shashank Kumar
Chauhan, Puneet Singh
description This study investigates the molecular mechanisms underlying salt stress responses in plants, focusing on the regulatory roles of OsNAM2, a gene influenced by the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens (SN13). The study examines how SN13-modulated OsNAM2 enhances salt tolerance in Arabidopsis through physiological, biochemical, and molecular analyses. Overexpression of OsNAM2, especially with SN13 inoculation, improves germination, seedling growth, root length, and biomass under high NaCl concentrations compared to wild-type plants, indicating a synergistic effect. OsNAM2 overexpression enhances relative water content, reduces electrolyte leakage and malondialdehyde accumulation, and increases proline content, suggesting better membrane integrity and stress endurance. Furthermore, SN13 and OsNAM2 overexpression modulates essential metabolic genes involved in glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle, facilitating metabolic adjustments crucial for salt stress adaptation. The interaction of OsNAM2 with SUS, facilitated by SN13, suggests enhanced sucrose metabolism efficiency, providing substrates for protective responses. Additionally, OsNAM2 plays a regulatory role in the ABA signaling pathway through significant protein-protein interactions like with AFP2. This study highlights the intricate interplay between SN13-responsive OsNAM2 and key signaling pathways, suggesting strategies for enhancing crop salt tolerance through targeted genetic and microbial interventions •Overexpression of SN13 responsive OsNAM2 significantly improves overall plant morphology under salt stress.•SN13 further amplifies the beneficial effects of OsNAM2, maintain Na+/K+ homeostasis and stress resilience.•SN13 responsive OsNAM2 overexpression leads to upregulating essential ABA-responsive genes.•Demonstrate significant interactions between SN13 responsive OsNAM2 and AFP2 and SUS.•Salt-tolerant crops can be developed by utilizing the OsNAM2 gene.
doi_str_mv 10.1016/j.micres.2024.127890
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3101794640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S094450132400291X</els_id><sourcerecordid>3101794640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-bbeba458ad58147e83b9bd11b0780a86d186f80f3d7d12d4fd0c7bd725467cba3</originalsourceid><addsrcrecordid>eNp9kMtu2zAQRYmiQe06_YOi4LIbOSRFSdSmgBHEaYAkNpJmTfAxKmjIok1SAfz3oaG0y6xmc-7cmYPQd0qWlND6arfcOxMgLhlhfElZI1ryCc1pTUVBalZ-RnPScl5UhJYz9DXGHSGUt4J9QbOyZbysRTVHx5t-NM6q5PyAfYe3t9unIm89-CG6V8Cb-Lh6YDjA37FXCSKOqk84-R6CGgxgN-BVUNpZf4guYn3Cq_WWYTVY_PzyjA_BJ8iMG1IOmHPLJbroVB_h2_tcoJf1zZ_r38X95vbuenVfGMZpKrQGrXgllK0E5Q2IUrfaUqpJI4gStaWi7gTpSttYyizvLDGNtg2reN0YrcoF-jntzTccR4hJ7l000PdqAD9GWWaLTctrTjLKJ9QEH2OATh6C26twkpTIs2y5k5NseZYtJ9k59uO9YdR7sP9D_-xm4NcEQP7z1UGQ0TjI2qwLYJK03n3c8Ab7LZKB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101794640</pqid></control><display><type>article</type><title>Elucidation of PGPR-responsive OsNAM2 regulates salt tolerance in Arabidopsis by AFP2 and SUS protein interaction</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Joshi, Harshita ; Harter, Klaus ; Rohr, Leander ; Mishra, Shashank Kumar ; Chauhan, Puneet Singh</creator><creatorcontrib>Joshi, Harshita ; Harter, Klaus ; Rohr, Leander ; Mishra, Shashank Kumar ; Chauhan, Puneet Singh</creatorcontrib><description>This study investigates the molecular mechanisms underlying salt stress responses in plants, focusing on the regulatory roles of OsNAM2, a gene influenced by the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens (SN13). The study examines how SN13-modulated OsNAM2 enhances salt tolerance in Arabidopsis through physiological, biochemical, and molecular analyses. Overexpression of OsNAM2, especially with SN13 inoculation, improves germination, seedling growth, root length, and biomass under high NaCl concentrations compared to wild-type plants, indicating a synergistic effect. OsNAM2 overexpression enhances relative water content, reduces electrolyte leakage and malondialdehyde accumulation, and increases proline content, suggesting better membrane integrity and stress endurance. Furthermore, SN13 and OsNAM2 overexpression modulates essential metabolic genes involved in glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle, facilitating metabolic adjustments crucial for salt stress adaptation. The interaction of OsNAM2 with SUS, facilitated by SN13, suggests enhanced sucrose metabolism efficiency, providing substrates for protective responses. Additionally, OsNAM2 plays a regulatory role in the ABA signaling pathway through significant protein-protein interactions like with AFP2. This study highlights the intricate interplay between SN13-responsive OsNAM2 and key signaling pathways, suggesting strategies for enhancing crop salt tolerance through targeted genetic and microbial interventions •Overexpression of SN13 responsive OsNAM2 significantly improves overall plant morphology under salt stress.•SN13 further amplifies the beneficial effects of OsNAM2, maintain Na+/K+ homeostasis and stress resilience.•SN13 responsive OsNAM2 overexpression leads to upregulating essential ABA-responsive genes.•Demonstrate significant interactions between SN13 responsive OsNAM2 and AFP2 and SUS.•Salt-tolerant crops can be developed by utilizing the OsNAM2 gene.</description><identifier>ISSN: 0944-5013</identifier><identifier>ISSN: 1618-0623</identifier><identifier>EISSN: 1618-0623</identifier><identifier>DOI: 10.1016/j.micres.2024.127890</identifier><identifier>PMID: 39243685</identifier><language>eng</language><publisher>Germany: Elsevier GmbH</publisher><subject>Abscisic Acid - metabolism ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis - physiology ; Bacillus amyloliquefaciens - genetics ; Bacillus amyloliquefaciens - metabolism ; Bacillus amyloliquefaciens - physiology ; BIFC ; FRET-FLIM ; Gene expression ; Gene Expression Regulation, Plant ; Germination ; Metabolism ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Roots - genetics ; Plant Roots - growth &amp; development ; Plant Roots - metabolism ; Plant Roots - microbiology ; Plants, Genetically Modified - genetics ; PPI ; Proline - metabolism ; Salt Stress ; Salt Tolerance - genetics ; Seedlings - genetics ; Seedlings - growth &amp; development ; Signal Transduction ; Sodium Chloride - metabolism</subject><ispartof>Microbiological research, 2024-12, Vol.289, p.127890, Article 127890</ispartof><rights>2024 Elsevier GmbH</rights><rights>Copyright © 2024 Elsevier GmbH. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-bbeba458ad58147e83b9bd11b0780a86d186f80f3d7d12d4fd0c7bd725467cba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.micres.2024.127890$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39243685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Joshi, Harshita</creatorcontrib><creatorcontrib>Harter, Klaus</creatorcontrib><creatorcontrib>Rohr, Leander</creatorcontrib><creatorcontrib>Mishra, Shashank Kumar</creatorcontrib><creatorcontrib>Chauhan, Puneet Singh</creatorcontrib><title>Elucidation of PGPR-responsive OsNAM2 regulates salt tolerance in Arabidopsis by AFP2 and SUS protein interaction</title><title>Microbiological research</title><addtitle>Microbiol Res</addtitle><description>This study investigates the molecular mechanisms underlying salt stress responses in plants, focusing on the regulatory roles of OsNAM2, a gene influenced by the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens (SN13). The study examines how SN13-modulated OsNAM2 enhances salt tolerance in Arabidopsis through physiological, biochemical, and molecular analyses. Overexpression of OsNAM2, especially with SN13 inoculation, improves germination, seedling growth, root length, and biomass under high NaCl concentrations compared to wild-type plants, indicating a synergistic effect. OsNAM2 overexpression enhances relative water content, reduces electrolyte leakage and malondialdehyde accumulation, and increases proline content, suggesting better membrane integrity and stress endurance. Furthermore, SN13 and OsNAM2 overexpression modulates essential metabolic genes involved in glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle, facilitating metabolic adjustments crucial for salt stress adaptation. The interaction of OsNAM2 with SUS, facilitated by SN13, suggests enhanced sucrose metabolism efficiency, providing substrates for protective responses. Additionally, OsNAM2 plays a regulatory role in the ABA signaling pathway through significant protein-protein interactions like with AFP2. This study highlights the intricate interplay between SN13-responsive OsNAM2 and key signaling pathways, suggesting strategies for enhancing crop salt tolerance through targeted genetic and microbial interventions •Overexpression of SN13 responsive OsNAM2 significantly improves overall plant morphology under salt stress.•SN13 further amplifies the beneficial effects of OsNAM2, maintain Na+/K+ homeostasis and stress resilience.•SN13 responsive OsNAM2 overexpression leads to upregulating essential ABA-responsive genes.•Demonstrate significant interactions between SN13 responsive OsNAM2 and AFP2 and SUS.•Salt-tolerant crops can be developed by utilizing the OsNAM2 gene.</description><subject>Abscisic Acid - metabolism</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - physiology</subject><subject>Bacillus amyloliquefaciens - genetics</subject><subject>Bacillus amyloliquefaciens - metabolism</subject><subject>Bacillus amyloliquefaciens - physiology</subject><subject>BIFC</subject><subject>FRET-FLIM</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Germination</subject><subject>Metabolism</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - growth &amp; development</subject><subject>Plant Roots - metabolism</subject><subject>Plant Roots - microbiology</subject><subject>Plants, Genetically Modified - genetics</subject><subject>PPI</subject><subject>Proline - metabolism</subject><subject>Salt Stress</subject><subject>Salt Tolerance - genetics</subject><subject>Seedlings - genetics</subject><subject>Seedlings - growth &amp; development</subject><subject>Signal Transduction</subject><subject>Sodium Chloride - metabolism</subject><issn>0944-5013</issn><issn>1618-0623</issn><issn>1618-0623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtu2zAQRYmiQe06_YOi4LIbOSRFSdSmgBHEaYAkNpJmTfAxKmjIok1SAfz3oaG0y6xmc-7cmYPQd0qWlND6arfcOxMgLhlhfElZI1ryCc1pTUVBalZ-RnPScl5UhJYz9DXGHSGUt4J9QbOyZbysRTVHx5t-NM6q5PyAfYe3t9unIm89-CG6V8Cb-Lh6YDjA37FXCSKOqk84-R6CGgxgN-BVUNpZf4guYn3Cq_WWYTVY_PzyjA_BJ8iMG1IOmHPLJbroVB_h2_tcoJf1zZ_r38X95vbuenVfGMZpKrQGrXgllK0E5Q2IUrfaUqpJI4gStaWi7gTpSttYyizvLDGNtg2reN0YrcoF-jntzTccR4hJ7l000PdqAD9GWWaLTctrTjLKJ9QEH2OATh6C26twkpTIs2y5k5NseZYtJ9k59uO9YdR7sP9D_-xm4NcEQP7z1UGQ0TjI2qwLYJK03n3c8Ab7LZKB</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Joshi, Harshita</creator><creator>Harter, Klaus</creator><creator>Rohr, Leander</creator><creator>Mishra, Shashank Kumar</creator><creator>Chauhan, Puneet Singh</creator><general>Elsevier GmbH</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202412</creationdate><title>Elucidation of PGPR-responsive OsNAM2 regulates salt tolerance in Arabidopsis by AFP2 and SUS protein interaction</title><author>Joshi, Harshita ; Harter, Klaus ; Rohr, Leander ; Mishra, Shashank Kumar ; Chauhan, Puneet Singh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-bbeba458ad58147e83b9bd11b0780a86d186f80f3d7d12d4fd0c7bd725467cba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abscisic Acid - metabolism</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - physiology</topic><topic>Bacillus amyloliquefaciens - genetics</topic><topic>Bacillus amyloliquefaciens - metabolism</topic><topic>Bacillus amyloliquefaciens - physiology</topic><topic>BIFC</topic><topic>FRET-FLIM</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Germination</topic><topic>Metabolism</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - growth &amp; development</topic><topic>Plant Roots - metabolism</topic><topic>Plant Roots - microbiology</topic><topic>Plants, Genetically Modified - genetics</topic><topic>PPI</topic><topic>Proline - metabolism</topic><topic>Salt Stress</topic><topic>Salt Tolerance - genetics</topic><topic>Seedlings - genetics</topic><topic>Seedlings - growth &amp; development</topic><topic>Signal Transduction</topic><topic>Sodium Chloride - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joshi, Harshita</creatorcontrib><creatorcontrib>Harter, Klaus</creatorcontrib><creatorcontrib>Rohr, Leander</creatorcontrib><creatorcontrib>Mishra, Shashank Kumar</creatorcontrib><creatorcontrib>Chauhan, Puneet Singh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Microbiological research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joshi, Harshita</au><au>Harter, Klaus</au><au>Rohr, Leander</au><au>Mishra, Shashank Kumar</au><au>Chauhan, Puneet Singh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidation of PGPR-responsive OsNAM2 regulates salt tolerance in Arabidopsis by AFP2 and SUS protein interaction</atitle><jtitle>Microbiological research</jtitle><addtitle>Microbiol Res</addtitle><date>2024-12</date><risdate>2024</risdate><volume>289</volume><spage>127890</spage><pages>127890-</pages><artnum>127890</artnum><issn>0944-5013</issn><issn>1618-0623</issn><eissn>1618-0623</eissn><abstract>This study investigates the molecular mechanisms underlying salt stress responses in plants, focusing on the regulatory roles of OsNAM2, a gene influenced by the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens (SN13). The study examines how SN13-modulated OsNAM2 enhances salt tolerance in Arabidopsis through physiological, biochemical, and molecular analyses. Overexpression of OsNAM2, especially with SN13 inoculation, improves germination, seedling growth, root length, and biomass under high NaCl concentrations compared to wild-type plants, indicating a synergistic effect. OsNAM2 overexpression enhances relative water content, reduces electrolyte leakage and malondialdehyde accumulation, and increases proline content, suggesting better membrane integrity and stress endurance. Furthermore, SN13 and OsNAM2 overexpression modulates essential metabolic genes involved in glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle, facilitating metabolic adjustments crucial for salt stress adaptation. The interaction of OsNAM2 with SUS, facilitated by SN13, suggests enhanced sucrose metabolism efficiency, providing substrates for protective responses. Additionally, OsNAM2 plays a regulatory role in the ABA signaling pathway through significant protein-protein interactions like with AFP2. This study highlights the intricate interplay between SN13-responsive OsNAM2 and key signaling pathways, suggesting strategies for enhancing crop salt tolerance through targeted genetic and microbial interventions •Overexpression of SN13 responsive OsNAM2 significantly improves overall plant morphology under salt stress.•SN13 further amplifies the beneficial effects of OsNAM2, maintain Na+/K+ homeostasis and stress resilience.•SN13 responsive OsNAM2 overexpression leads to upregulating essential ABA-responsive genes.•Demonstrate significant interactions between SN13 responsive OsNAM2 and AFP2 and SUS.•Salt-tolerant crops can be developed by utilizing the OsNAM2 gene.</abstract><cop>Germany</cop><pub>Elsevier GmbH</pub><pmid>39243685</pmid><doi>10.1016/j.micres.2024.127890</doi></addata></record>
fulltext fulltext
identifier ISSN: 0944-5013
ispartof Microbiological research, 2024-12, Vol.289, p.127890, Article 127890
issn 0944-5013
1618-0623
1618-0623
language eng
recordid cdi_proquest_miscellaneous_3101794640
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Abscisic Acid - metabolism
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis - physiology
Bacillus amyloliquefaciens - genetics
Bacillus amyloliquefaciens - metabolism
Bacillus amyloliquefaciens - physiology
BIFC
FRET-FLIM
Gene expression
Gene Expression Regulation, Plant
Germination
Metabolism
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Roots - genetics
Plant Roots - growth & development
Plant Roots - metabolism
Plant Roots - microbiology
Plants, Genetically Modified - genetics
PPI
Proline - metabolism
Salt Stress
Salt Tolerance - genetics
Seedlings - genetics
Seedlings - growth & development
Signal Transduction
Sodium Chloride - metabolism
title Elucidation of PGPR-responsive OsNAM2 regulates salt tolerance in Arabidopsis by AFP2 and SUS protein interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A53%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidation%20of%20PGPR-responsive%20OsNAM2%20regulates%20salt%20tolerance%20in%20Arabidopsis%20by%20AFP2%20and%20SUS%20protein%20interaction&rft.jtitle=Microbiological%20research&rft.au=Joshi,%20Harshita&rft.date=2024-12&rft.volume=289&rft.spage=127890&rft.pages=127890-&rft.artnum=127890&rft.issn=0944-5013&rft.eissn=1618-0623&rft_id=info:doi/10.1016/j.micres.2024.127890&rft_dat=%3Cproquest_cross%3E3101794640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3101794640&rft_id=info:pmid/39243685&rft_els_id=S094450132400291X&rfr_iscdi=true