A novel method for sparse dynamic functional connectivity analysis from resting-state fMRI

There is growing interest in understanding the dynamic functional connectivity (DFC) between distributed brain regions. However, it remains challenging to reliably estimate the temporal dynamics from resting-state functional magnetic resonance imaging (rs-fMRI) due to the limitations of current meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience methods 2024-11, Vol.411, p.110275, Article 110275
Hauptverfasser: Wang, Houxiang, Chen, Jiaqing, Yuan, Zihao, Huang, Yangxin, Lin, Fuchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110275
container_title Journal of neuroscience methods
container_volume 411
creator Wang, Houxiang
Chen, Jiaqing
Yuan, Zihao
Huang, Yangxin
Lin, Fuchun
description There is growing interest in understanding the dynamic functional connectivity (DFC) between distributed brain regions. However, it remains challenging to reliably estimate the temporal dynamics from resting-state functional magnetic resonance imaging (rs-fMRI) due to the limitations of current methods. We propose a new model called HDP-HSMM-BPCA for sparse DFC analysis of high-dimensional rs-fMRI data, which is a temporal extension of probabilistic principal component analysis using Bayesian nonparametric hidden semi-Markov model (HSMM). Specifically, we utilize a hierarchical Dirichlet process (HDP) prior to remove the parametric assumption of the HMM framework, overcoming the limitations of the standard HMM. An attractive superiority is its ability to automatically infer the state-specific latent space dimensionality within the Bayesian formulation. The experiment results of synthetic data show that our model outperforms the competitive models with relatively higher estimation accuracy. In addition, the proposed framework is applied to real rs-fMRI data to explore sparse DFC patterns. The findings indicate that there is a time-varying underlying structure and sparse DFC patterns in high-dimensional rs-fMRI data. Compared with the existing DFC approaches based on HMM, our method overcomes the limitations of standard HMM. The observation model of HDP-HSMM-BPCA can discover the underlying temporal structure of rs-fMRI data. Furthermore, the relevant sparse DFC construction algorithm provides a scheme for estimating sparse DFC. We describe a new computational framework for sparse DFC analysis to discover the underlying temporal structure of rs-fMRI data, which will facilitate the study of brain functional connectivity. •Our method provides a novel scheme for sparse DFC estimation.•Our method overcomes the limitations of standard HMM.•The Bayesian inference makes the method free from model selection.
doi_str_mv 10.1016/j.jneumeth.2024.110275
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3101794277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165027024002206</els_id><sourcerecordid>3101794277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-4fce4f372a9ffb2a5a001d3e351db4e56f59a64c234777705b84b1633ebba6173</originalsourceid><addsrcrecordid>eNqFkMtKAzEUQIMoWh-_ULJ0MzWvyXR2ivgCRRAFcRMymRtNmUlqMlPo35vS6tZsLrmc-zoITSmZUULlxWK28DD2MHzNGGFiRilhVbmHJnResUJW8_d9NMlgWeQ8OULHKS0IIaIm8hAd8ZoJWsv5BH1cYR9W0OFNq9BiGyJOSx0T4Hbtde8MtqM3gwted9gE7yF_Vm5YY50z6-QStjH0OEIanP8s0qAHwPbp5eEUHVjdJTjbxRP0dnvzen1fPD7fPVxfPRaGiXIohDUgLK-Yrq1tmC41IbTlwEvaNgJKactaS2EYF1V-pGzmoqGSc2gaLWnFT9D5tu8yhu8xr6F6lwx0nfYQxqR4FlbVglUbVG5RE0NKEaxaRtfruFaUqI1XtVC_XtXGq9p6zYXT3Yyx6aH9K_sVmYHLLQD50pWDqJJx4A20LmZjqg3uvxk_KtqNxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101794277</pqid></control><display><type>article</type><title>A novel method for sparse dynamic functional connectivity analysis from resting-state fMRI</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Houxiang ; Chen, Jiaqing ; Yuan, Zihao ; Huang, Yangxin ; Lin, Fuchun</creator><creatorcontrib>Wang, Houxiang ; Chen, Jiaqing ; Yuan, Zihao ; Huang, Yangxin ; Lin, Fuchun</creatorcontrib><description>There is growing interest in understanding the dynamic functional connectivity (DFC) between distributed brain regions. However, it remains challenging to reliably estimate the temporal dynamics from resting-state functional magnetic resonance imaging (rs-fMRI) due to the limitations of current methods. We propose a new model called HDP-HSMM-BPCA for sparse DFC analysis of high-dimensional rs-fMRI data, which is a temporal extension of probabilistic principal component analysis using Bayesian nonparametric hidden semi-Markov model (HSMM). Specifically, we utilize a hierarchical Dirichlet process (HDP) prior to remove the parametric assumption of the HMM framework, overcoming the limitations of the standard HMM. An attractive superiority is its ability to automatically infer the state-specific latent space dimensionality within the Bayesian formulation. The experiment results of synthetic data show that our model outperforms the competitive models with relatively higher estimation accuracy. In addition, the proposed framework is applied to real rs-fMRI data to explore sparse DFC patterns. The findings indicate that there is a time-varying underlying structure and sparse DFC patterns in high-dimensional rs-fMRI data. Compared with the existing DFC approaches based on HMM, our method overcomes the limitations of standard HMM. The observation model of HDP-HSMM-BPCA can discover the underlying temporal structure of rs-fMRI data. Furthermore, the relevant sparse DFC construction algorithm provides a scheme for estimating sparse DFC. We describe a new computational framework for sparse DFC analysis to discover the underlying temporal structure of rs-fMRI data, which will facilitate the study of brain functional connectivity. •Our method provides a novel scheme for sparse DFC estimation.•Our method overcomes the limitations of standard HMM.•The Bayesian inference makes the method free from model selection.</description><identifier>ISSN: 0165-0270</identifier><identifier>ISSN: 1872-678X</identifier><identifier>EISSN: 1872-678X</identifier><identifier>DOI: 10.1016/j.jneumeth.2024.110275</identifier><identifier>PMID: 39241968</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Bayesian methods ; Dynamic functional connectivity ; Hidden semi-Markov model ; Resting-state fMRI ; Sparsity</subject><ispartof>Journal of neuroscience methods, 2024-11, Vol.411, p.110275, Article 110275</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-4fce4f372a9ffb2a5a001d3e351db4e56f59a64c234777705b84b1633ebba6173</cites><orcidid>0009-0000-2724-4265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165027024002206$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39241968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Houxiang</creatorcontrib><creatorcontrib>Chen, Jiaqing</creatorcontrib><creatorcontrib>Yuan, Zihao</creatorcontrib><creatorcontrib>Huang, Yangxin</creatorcontrib><creatorcontrib>Lin, Fuchun</creatorcontrib><title>A novel method for sparse dynamic functional connectivity analysis from resting-state fMRI</title><title>Journal of neuroscience methods</title><addtitle>J Neurosci Methods</addtitle><description>There is growing interest in understanding the dynamic functional connectivity (DFC) between distributed brain regions. However, it remains challenging to reliably estimate the temporal dynamics from resting-state functional magnetic resonance imaging (rs-fMRI) due to the limitations of current methods. We propose a new model called HDP-HSMM-BPCA for sparse DFC analysis of high-dimensional rs-fMRI data, which is a temporal extension of probabilistic principal component analysis using Bayesian nonparametric hidden semi-Markov model (HSMM). Specifically, we utilize a hierarchical Dirichlet process (HDP) prior to remove the parametric assumption of the HMM framework, overcoming the limitations of the standard HMM. An attractive superiority is its ability to automatically infer the state-specific latent space dimensionality within the Bayesian formulation. The experiment results of synthetic data show that our model outperforms the competitive models with relatively higher estimation accuracy. In addition, the proposed framework is applied to real rs-fMRI data to explore sparse DFC patterns. The findings indicate that there is a time-varying underlying structure and sparse DFC patterns in high-dimensional rs-fMRI data. Compared with the existing DFC approaches based on HMM, our method overcomes the limitations of standard HMM. The observation model of HDP-HSMM-BPCA can discover the underlying temporal structure of rs-fMRI data. Furthermore, the relevant sparse DFC construction algorithm provides a scheme for estimating sparse DFC. We describe a new computational framework for sparse DFC analysis to discover the underlying temporal structure of rs-fMRI data, which will facilitate the study of brain functional connectivity. •Our method provides a novel scheme for sparse DFC estimation.•Our method overcomes the limitations of standard HMM.•The Bayesian inference makes the method free from model selection.</description><subject>Bayesian methods</subject><subject>Dynamic functional connectivity</subject><subject>Hidden semi-Markov model</subject><subject>Resting-state fMRI</subject><subject>Sparsity</subject><issn>0165-0270</issn><issn>1872-678X</issn><issn>1872-678X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUQIMoWh-_ULJ0MzWvyXR2ivgCRRAFcRMymRtNmUlqMlPo35vS6tZsLrmc-zoITSmZUULlxWK28DD2MHzNGGFiRilhVbmHJnResUJW8_d9NMlgWeQ8OULHKS0IIaIm8hAd8ZoJWsv5BH1cYR9W0OFNq9BiGyJOSx0T4Hbtde8MtqM3gwted9gE7yF_Vm5YY50z6-QStjH0OEIanP8s0qAHwPbp5eEUHVjdJTjbxRP0dnvzen1fPD7fPVxfPRaGiXIohDUgLK-Yrq1tmC41IbTlwEvaNgJKactaS2EYF1V-pGzmoqGSc2gaLWnFT9D5tu8yhu8xr6F6lwx0nfYQxqR4FlbVglUbVG5RE0NKEaxaRtfruFaUqI1XtVC_XtXGq9p6zYXT3Yyx6aH9K_sVmYHLLQD50pWDqJJx4A20LmZjqg3uvxk_KtqNxw</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Wang, Houxiang</creator><creator>Chen, Jiaqing</creator><creator>Yuan, Zihao</creator><creator>Huang, Yangxin</creator><creator>Lin, Fuchun</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0000-2724-4265</orcidid></search><sort><creationdate>20241101</creationdate><title>A novel method for sparse dynamic functional connectivity analysis from resting-state fMRI</title><author>Wang, Houxiang ; Chen, Jiaqing ; Yuan, Zihao ; Huang, Yangxin ; Lin, Fuchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-4fce4f372a9ffb2a5a001d3e351db4e56f59a64c234777705b84b1633ebba6173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayesian methods</topic><topic>Dynamic functional connectivity</topic><topic>Hidden semi-Markov model</topic><topic>Resting-state fMRI</topic><topic>Sparsity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Houxiang</creatorcontrib><creatorcontrib>Chen, Jiaqing</creatorcontrib><creatorcontrib>Yuan, Zihao</creatorcontrib><creatorcontrib>Huang, Yangxin</creatorcontrib><creatorcontrib>Lin, Fuchun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroscience methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Houxiang</au><au>Chen, Jiaqing</au><au>Yuan, Zihao</au><au>Huang, Yangxin</au><au>Lin, Fuchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel method for sparse dynamic functional connectivity analysis from resting-state fMRI</atitle><jtitle>Journal of neuroscience methods</jtitle><addtitle>J Neurosci Methods</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>411</volume><spage>110275</spage><pages>110275-</pages><artnum>110275</artnum><issn>0165-0270</issn><issn>1872-678X</issn><eissn>1872-678X</eissn><abstract>There is growing interest in understanding the dynamic functional connectivity (DFC) between distributed brain regions. However, it remains challenging to reliably estimate the temporal dynamics from resting-state functional magnetic resonance imaging (rs-fMRI) due to the limitations of current methods. We propose a new model called HDP-HSMM-BPCA for sparse DFC analysis of high-dimensional rs-fMRI data, which is a temporal extension of probabilistic principal component analysis using Bayesian nonparametric hidden semi-Markov model (HSMM). Specifically, we utilize a hierarchical Dirichlet process (HDP) prior to remove the parametric assumption of the HMM framework, overcoming the limitations of the standard HMM. An attractive superiority is its ability to automatically infer the state-specific latent space dimensionality within the Bayesian formulation. The experiment results of synthetic data show that our model outperforms the competitive models with relatively higher estimation accuracy. In addition, the proposed framework is applied to real rs-fMRI data to explore sparse DFC patterns. The findings indicate that there is a time-varying underlying structure and sparse DFC patterns in high-dimensional rs-fMRI data. Compared with the existing DFC approaches based on HMM, our method overcomes the limitations of standard HMM. The observation model of HDP-HSMM-BPCA can discover the underlying temporal structure of rs-fMRI data. Furthermore, the relevant sparse DFC construction algorithm provides a scheme for estimating sparse DFC. We describe a new computational framework for sparse DFC analysis to discover the underlying temporal structure of rs-fMRI data, which will facilitate the study of brain functional connectivity. •Our method provides a novel scheme for sparse DFC estimation.•Our method overcomes the limitations of standard HMM.•The Bayesian inference makes the method free from model selection.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39241968</pmid><doi>10.1016/j.jneumeth.2024.110275</doi><orcidid>https://orcid.org/0009-0000-2724-4265</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0165-0270
ispartof Journal of neuroscience methods, 2024-11, Vol.411, p.110275, Article 110275
issn 0165-0270
1872-678X
1872-678X
language eng
recordid cdi_proquest_miscellaneous_3101794277
source Elsevier ScienceDirect Journals
subjects Bayesian methods
Dynamic functional connectivity
Hidden semi-Markov model
Resting-state fMRI
Sparsity
title A novel method for sparse dynamic functional connectivity analysis from resting-state fMRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A38%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20method%20for%20sparse%20dynamic%20functional%20connectivity%20analysis%20from%20resting-state%20fMRI&rft.jtitle=Journal%20of%20neuroscience%20methods&rft.au=Wang,%20Houxiang&rft.date=2024-11-01&rft.volume=411&rft.spage=110275&rft.pages=110275-&rft.artnum=110275&rft.issn=0165-0270&rft.eissn=1872-678X&rft_id=info:doi/10.1016/j.jneumeth.2024.110275&rft_dat=%3Cproquest_cross%3E3101794277%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3101794277&rft_id=info:pmid/39241968&rft_els_id=S0165027024002206&rfr_iscdi=true