Identification of key factors and mechanism determining arsenic mobilization in paddy soil-porewater-rice system
Arsenic (As) mobilization in paddy fields poses significant health risks, necessitating a thorough understanding of the controlling factors and mechanisms to safeguard human health. We conducted a comprehensive investigation of the soil-porewater-rice system throughout the rice life cycle, focusing...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2024-11, Vol.479, p.135684, Article 135684 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Arsenic (As) mobilization in paddy fields poses significant health risks, necessitating a thorough understanding of the controlling factors and mechanisms to safeguard human health. We conducted a comprehensive investigation of the soil-porewater-rice system throughout the rice life cycle, focusing on monitoring arsenic distribution and porewater characteristics in typical paddy field plots. Soil pH ranged from 4.79 to 7.98, while porewater pH was weakly alkaline, varying from 7.2 to 7.47. Total arsenic content in paddy soils ranged from 6.8 to 17.2 mg/kg, with arsenic concentrations in porewater during rice growth ranging from 2.97 to 14.85 μg/L. Specifically, arsenite concentrations in porewater ranged from 0.48 to 7.91 μg/L, and arsenate concentrations ranged from 0.73 to 5.83 μg/L. Through principal component analysis (PCA) and analysis of redox factors, we identified that arsenic concentration in porewater is predominantly influenced by the interplay of reduction and desorption processes, contributing 43.5 % collectively. Specifically, the reductive dissolution of iron oxides associated with organic carbon accounted for 23.3 % of arsenic concentration dynamics in porewater. Additionally, arsenic release from the soil followed a sequence starting with nitrate reduction, followed by ferric ion reduction, and subsequently sulfate reduction. Our findings provide valuable insights into the mechanisms governing arsenic mobilization within the paddy soil-porewater-rice system. These insights could inform strategies for irrigation management aimed at mitigating arsenic toxicity and associated health risks.
[Display omitted]
•Reduction and desorption contributed 43.5 % role of As in porewater.•Fe oxide and organic carbon contributed 23.3 % role of As in porewater.•Redox order was associated with NO3-, Fe3+, and SO42- reductive sequence in field. |
---|---|
ISSN: | 0304-3894 1873-3336 1873-3336 |
DOI: | 10.1016/j.jhazmat.2024.135684 |