In Vitro and In Silico Studies of the Biological Activities of Some Secondary Metabolites Belonging to Ficus sur Forssk (Moraceae): Towards Optimization of Wighteone Metabolite

Based on ethnomedicinal and chemotaxonomic records of Ficus plants, Ficus sur Forssk was studied in the search for bioactive compounds. Eleven known compounds including mixture α ‐amyrin acetate and β ‐amyrin acetate (1 and 2), lupeol (3), 3β‐acetoxy‐olean‐12‐en‐11‐one (4), lupenyl acetate (5), tara...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry & biodiversity 2025-01, Vol.22 (1), p.e202401270-n/a
Hauptverfasser: Ngoh Misse Mouelle, Eitel, Foundikou Nsangou, Mohamed, Fofack, Hans Merlin Tsahnang, Mboutchak, Dieunedort, Koliye, Pierre Roger, Amana Ateba, Baruch, Ntie‐Kang, Fidele, Akone, Sergi Herve, Ngeufa Happi, Emmanuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e202401270
container_title Chemistry & biodiversity
container_volume 22
creator Ngoh Misse Mouelle, Eitel
Foundikou Nsangou, Mohamed
Fofack, Hans Merlin Tsahnang
Mboutchak, Dieunedort
Koliye, Pierre Roger
Amana Ateba, Baruch
Ntie‐Kang, Fidele
Akone, Sergi Herve
Ngeufa Happi, Emmanuel
description Based on ethnomedicinal and chemotaxonomic records of Ficus plants, Ficus sur Forssk was studied in the search for bioactive compounds. Eleven known compounds including mixture α ‐amyrin acetate and β ‐amyrin acetate (1 and 2), lupeol (3), 3β‐acetoxy‐olean‐12‐en‐11‐one (4), lupenyl acetate (5), taraxastan‐3,20‐diol (6), 3′‐ (3‐methylbut‐2‐enyl) biochanin A (7), derrone (8), quercetin (9), stigmasterol (10), and stigmasterol glycoside (11) were isolated from stem barks of Ficus sur Forssk. Their structures were obtained through analysis of spectroscopic data 1D and 2D NMR), mass spectrometry, and by comparison of these data with the literature. Nine isolated compounds (1–7, 10, 11) were tested as the active wighteone metabolite previously isolated from the roots of this plant against the human HepG2 hepatocellular carcinoma cells and a small panel of sensitive microbial strains for structure‐ activity relationship purpose. The compounds didn't show any activity. With the aim of understanding the impact of the structural difference between wighteone metabolite and its analogs, the former were cross‐docked to evaluate their anticancer properties via the apoptosis pathway. Wighteone metabolite proved to be the best ligand confirming its previous bioassay result. Thus, the current study lays the framework for the further optimization of wighteone metabolite regarding its anticancer activity.
doi_str_mv 10.1002/cbdv.202401270
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3101232052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3156533565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2580-14e53f9f93624a33aca839778e09ed3b5cee327c6d08dd88abf3a27d79fe876a3</originalsourceid><addsrcrecordid>eNqFkU9v0zAYhy0EYqPsyhFZ4jIOLY7dxA63tVCYtGmHbuMYOfabziPJ29nOpvGp-Ii4atchLlz87338yH5_hLzL2CRjjH8ytb2fcManLOOSvSCHWZHxcaYUe7lfS35A3oRwm_h0rl6TA1FyUXCZH5Lfpz29dtEj1b2labN0rTNIl3GwDgLFhsYboDOHLa6c0S09MdHdu7grLrEDugSDvdX-kZ5D1DW2LqbqDFrsV65f0Yh04cwQaBg8XaAP4Sc9PkevDWj4-Jle4oP2NtCLdXSd-6Wjw34j_-FWNxGwh7-8b8mrRrcBjnbziFwtvl7Ov4_PLr6dzk_Oxobnio2zKeSiKZsy_XOqhdBGK1FKqYCVYEWdGwDBpSksU9YqpetGaC6tLBtQstBiRI633rXHuwFCrDoXDLSt7gGHUIksdVxwlvOEfvgHvcXB9-l1icqLXIjNMCKTLWU8huChqdbedalpVcaqTZbVJstqn2W68H6nHeoO7B5_Ci8B5RZ4cC08_kdXzWdfrp_lfwBCTazQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3156533565</pqid></control><display><type>article</type><title>In Vitro and In Silico Studies of the Biological Activities of Some Secondary Metabolites Belonging to Ficus sur Forssk (Moraceae): Towards Optimization of Wighteone Metabolite</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ngoh Misse Mouelle, Eitel ; Foundikou Nsangou, Mohamed ; Fofack, Hans Merlin Tsahnang ; Mboutchak, Dieunedort ; Koliye, Pierre Roger ; Amana Ateba, Baruch ; Ntie‐Kang, Fidele ; Akone, Sergi Herve ; Ngeufa Happi, Emmanuel</creator><creatorcontrib>Ngoh Misse Mouelle, Eitel ; Foundikou Nsangou, Mohamed ; Fofack, Hans Merlin Tsahnang ; Mboutchak, Dieunedort ; Koliye, Pierre Roger ; Amana Ateba, Baruch ; Ntie‐Kang, Fidele ; Akone, Sergi Herve ; Ngeufa Happi, Emmanuel</creatorcontrib><description>Based on ethnomedicinal and chemotaxonomic records of Ficus plants, Ficus sur Forssk was studied in the search for bioactive compounds. Eleven known compounds including mixture α ‐amyrin acetate and β ‐amyrin acetate (1 and 2), lupeol (3), 3β‐acetoxy‐olean‐12‐en‐11‐one (4), lupenyl acetate (5), taraxastan‐3,20‐diol (6), 3′‐ (3‐methylbut‐2‐enyl) biochanin A (7), derrone (8), quercetin (9), stigmasterol (10), and stigmasterol glycoside (11) were isolated from stem barks of Ficus sur Forssk. Their structures were obtained through analysis of spectroscopic data 1D and 2D NMR), mass spectrometry, and by comparison of these data with the literature. Nine isolated compounds (1–7, 10, 11) were tested as the active wighteone metabolite previously isolated from the roots of this plant against the human HepG2 hepatocellular carcinoma cells and a small panel of sensitive microbial strains for structure‐ activity relationship purpose. The compounds didn't show any activity. With the aim of understanding the impact of the structural difference between wighteone metabolite and its analogs, the former were cross‐docked to evaluate their anticancer properties via the apoptosis pathway. Wighteone metabolite proved to be the best ligand confirming its previous bioassay result. Thus, the current study lays the framework for the further optimization of wighteone metabolite regarding its anticancer activity.</description><identifier>ISSN: 1612-1872</identifier><identifier>ISSN: 1612-1880</identifier><identifier>EISSN: 1612-1880</identifier><identifier>DOI: 10.1002/cbdv.202401270</identifier><identifier>PMID: 39236275</identifier><language>eng</language><publisher>Switzerland: Wiley Subscription Services, Inc</publisher><subject>Acetic acid ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - isolation &amp; purification ; Anti-Bacterial Agents - metabolism ; Anti-Bacterial Agents - pharmacology ; Anticancer properties ; Antineoplastic Agents, Phytogenic - chemistry ; Antineoplastic Agents, Phytogenic - isolation &amp; purification ; Antineoplastic Agents, Phytogenic - metabolism ; Antineoplastic Agents, Phytogenic - pharmacology ; Antitumor activity ; Apoptosis ; Bioactive compounds ; Bioassays ; Biochanin A ; Cancer ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Dose-Response Relationship, Drug ; Drug Screening Assays, Antitumor ; Ficus - chemistry ; Ficus - metabolism ; Ficus sur ; Glycosides ; Hep G2 Cells ; Hepatocellular carcinoma ; Humans ; Liver cancer ; Mass spectrometry ; Mass spectroscopy ; Metabolites ; Microbial Sensitivity Tests ; Microorganisms ; Molecular docking ; Molecular Structure ; NMR ; Nuclear magnetic resonance ; Optimization ; Plant cells ; Quercetin ; SAR ; Secondary metabolites ; Structure-Activity Relationship ; Two dimensional analysis ; Wighteone metabolite</subject><ispartof>Chemistry &amp; biodiversity, 2025-01, Vol.22 (1), p.e202401270-n/a</ispartof><rights>2024 Wiley-VHCA AG, Zurich, Switzerland</rights><rights>2024 Wiley-VHCA AG, Zurich, Switzerland.</rights><rights>2025 Wiley-VHCA AG, Zurich, Switzerland</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2580-14e53f9f93624a33aca839778e09ed3b5cee327c6d08dd88abf3a27d79fe876a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbdv.202401270$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbdv.202401270$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39236275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ngoh Misse Mouelle, Eitel</creatorcontrib><creatorcontrib>Foundikou Nsangou, Mohamed</creatorcontrib><creatorcontrib>Fofack, Hans Merlin Tsahnang</creatorcontrib><creatorcontrib>Mboutchak, Dieunedort</creatorcontrib><creatorcontrib>Koliye, Pierre Roger</creatorcontrib><creatorcontrib>Amana Ateba, Baruch</creatorcontrib><creatorcontrib>Ntie‐Kang, Fidele</creatorcontrib><creatorcontrib>Akone, Sergi Herve</creatorcontrib><creatorcontrib>Ngeufa Happi, Emmanuel</creatorcontrib><title>In Vitro and In Silico Studies of the Biological Activities of Some Secondary Metabolites Belonging to Ficus sur Forssk (Moraceae): Towards Optimization of Wighteone Metabolite</title><title>Chemistry &amp; biodiversity</title><addtitle>Chem Biodivers</addtitle><description>Based on ethnomedicinal and chemotaxonomic records of Ficus plants, Ficus sur Forssk was studied in the search for bioactive compounds. Eleven known compounds including mixture α ‐amyrin acetate and β ‐amyrin acetate (1 and 2), lupeol (3), 3β‐acetoxy‐olean‐12‐en‐11‐one (4), lupenyl acetate (5), taraxastan‐3,20‐diol (6), 3′‐ (3‐methylbut‐2‐enyl) biochanin A (7), derrone (8), quercetin (9), stigmasterol (10), and stigmasterol glycoside (11) were isolated from stem barks of Ficus sur Forssk. Their structures were obtained through analysis of spectroscopic data 1D and 2D NMR), mass spectrometry, and by comparison of these data with the literature. Nine isolated compounds (1–7, 10, 11) were tested as the active wighteone metabolite previously isolated from the roots of this plant against the human HepG2 hepatocellular carcinoma cells and a small panel of sensitive microbial strains for structure‐ activity relationship purpose. The compounds didn't show any activity. With the aim of understanding the impact of the structural difference between wighteone metabolite and its analogs, the former were cross‐docked to evaluate their anticancer properties via the apoptosis pathway. Wighteone metabolite proved to be the best ligand confirming its previous bioassay result. Thus, the current study lays the framework for the further optimization of wighteone metabolite regarding its anticancer activity.</description><subject>Acetic acid</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - isolation &amp; purification</subject><subject>Anti-Bacterial Agents - metabolism</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Anticancer properties</subject><subject>Antineoplastic Agents, Phytogenic - chemistry</subject><subject>Antineoplastic Agents, Phytogenic - isolation &amp; purification</subject><subject>Antineoplastic Agents, Phytogenic - metabolism</subject><subject>Antineoplastic Agents, Phytogenic - pharmacology</subject><subject>Antitumor activity</subject><subject>Apoptosis</subject><subject>Bioactive compounds</subject><subject>Bioassays</subject><subject>Biochanin A</subject><subject>Cancer</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Screening Assays, Antitumor</subject><subject>Ficus - chemistry</subject><subject>Ficus - metabolism</subject><subject>Ficus sur</subject><subject>Glycosides</subject><subject>Hep G2 Cells</subject><subject>Hepatocellular carcinoma</subject><subject>Humans</subject><subject>Liver cancer</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolites</subject><subject>Microbial Sensitivity Tests</subject><subject>Microorganisms</subject><subject>Molecular docking</subject><subject>Molecular Structure</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Optimization</subject><subject>Plant cells</subject><subject>Quercetin</subject><subject>SAR</subject><subject>Secondary metabolites</subject><subject>Structure-Activity Relationship</subject><subject>Two dimensional analysis</subject><subject>Wighteone metabolite</subject><issn>1612-1872</issn><issn>1612-1880</issn><issn>1612-1880</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v0zAYhy0EYqPsyhFZ4jIOLY7dxA63tVCYtGmHbuMYOfabziPJ29nOpvGp-Ii4atchLlz87338yH5_hLzL2CRjjH8ytb2fcManLOOSvSCHWZHxcaYUe7lfS35A3oRwm_h0rl6TA1FyUXCZH5Lfpz29dtEj1b2labN0rTNIl3GwDgLFhsYboDOHLa6c0S09MdHdu7grLrEDugSDvdX-kZ5D1DW2LqbqDFrsV65f0Yh04cwQaBg8XaAP4Sc9PkevDWj4-Jle4oP2NtCLdXSd-6Wjw34j_-FWNxGwh7-8b8mrRrcBjnbziFwtvl7Ov4_PLr6dzk_Oxobnio2zKeSiKZsy_XOqhdBGK1FKqYCVYEWdGwDBpSksU9YqpetGaC6tLBtQstBiRI633rXHuwFCrDoXDLSt7gGHUIksdVxwlvOEfvgHvcXB9-l1icqLXIjNMCKTLWU8huChqdbedalpVcaqTZbVJstqn2W68H6nHeoO7B5_Ci8B5RZ4cC08_kdXzWdfrp_lfwBCTazQ</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Ngoh Misse Mouelle, Eitel</creator><creator>Foundikou Nsangou, Mohamed</creator><creator>Fofack, Hans Merlin Tsahnang</creator><creator>Mboutchak, Dieunedort</creator><creator>Koliye, Pierre Roger</creator><creator>Amana Ateba, Baruch</creator><creator>Ntie‐Kang, Fidele</creator><creator>Akone, Sergi Herve</creator><creator>Ngeufa Happi, Emmanuel</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202501</creationdate><title>In Vitro and In Silico Studies of the Biological Activities of Some Secondary Metabolites Belonging to Ficus sur Forssk (Moraceae): Towards Optimization of Wighteone Metabolite</title><author>Ngoh Misse Mouelle, Eitel ; Foundikou Nsangou, Mohamed ; Fofack, Hans Merlin Tsahnang ; Mboutchak, Dieunedort ; Koliye, Pierre Roger ; Amana Ateba, Baruch ; Ntie‐Kang, Fidele ; Akone, Sergi Herve ; Ngeufa Happi, Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2580-14e53f9f93624a33aca839778e09ed3b5cee327c6d08dd88abf3a27d79fe876a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Acetic acid</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - isolation &amp; purification</topic><topic>Anti-Bacterial Agents - metabolism</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Anticancer properties</topic><topic>Antineoplastic Agents, Phytogenic - chemistry</topic><topic>Antineoplastic Agents, Phytogenic - isolation &amp; purification</topic><topic>Antineoplastic Agents, Phytogenic - metabolism</topic><topic>Antineoplastic Agents, Phytogenic - pharmacology</topic><topic>Antitumor activity</topic><topic>Apoptosis</topic><topic>Bioactive compounds</topic><topic>Bioassays</topic><topic>Biochanin A</topic><topic>Cancer</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Screening Assays, Antitumor</topic><topic>Ficus - chemistry</topic><topic>Ficus - metabolism</topic><topic>Ficus sur</topic><topic>Glycosides</topic><topic>Hep G2 Cells</topic><topic>Hepatocellular carcinoma</topic><topic>Humans</topic><topic>Liver cancer</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolites</topic><topic>Microbial Sensitivity Tests</topic><topic>Microorganisms</topic><topic>Molecular docking</topic><topic>Molecular Structure</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Optimization</topic><topic>Plant cells</topic><topic>Quercetin</topic><topic>SAR</topic><topic>Secondary metabolites</topic><topic>Structure-Activity Relationship</topic><topic>Two dimensional analysis</topic><topic>Wighteone metabolite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ngoh Misse Mouelle, Eitel</creatorcontrib><creatorcontrib>Foundikou Nsangou, Mohamed</creatorcontrib><creatorcontrib>Fofack, Hans Merlin Tsahnang</creatorcontrib><creatorcontrib>Mboutchak, Dieunedort</creatorcontrib><creatorcontrib>Koliye, Pierre Roger</creatorcontrib><creatorcontrib>Amana Ateba, Baruch</creatorcontrib><creatorcontrib>Ntie‐Kang, Fidele</creatorcontrib><creatorcontrib>Akone, Sergi Herve</creatorcontrib><creatorcontrib>Ngeufa Happi, Emmanuel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry &amp; biodiversity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ngoh Misse Mouelle, Eitel</au><au>Foundikou Nsangou, Mohamed</au><au>Fofack, Hans Merlin Tsahnang</au><au>Mboutchak, Dieunedort</au><au>Koliye, Pierre Roger</au><au>Amana Ateba, Baruch</au><au>Ntie‐Kang, Fidele</au><au>Akone, Sergi Herve</au><au>Ngeufa Happi, Emmanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vitro and In Silico Studies of the Biological Activities of Some Secondary Metabolites Belonging to Ficus sur Forssk (Moraceae): Towards Optimization of Wighteone Metabolite</atitle><jtitle>Chemistry &amp; biodiversity</jtitle><addtitle>Chem Biodivers</addtitle><date>2025-01</date><risdate>2025</risdate><volume>22</volume><issue>1</issue><spage>e202401270</spage><epage>n/a</epage><pages>e202401270-n/a</pages><issn>1612-1872</issn><issn>1612-1880</issn><eissn>1612-1880</eissn><abstract>Based on ethnomedicinal and chemotaxonomic records of Ficus plants, Ficus sur Forssk was studied in the search for bioactive compounds. Eleven known compounds including mixture α ‐amyrin acetate and β ‐amyrin acetate (1 and 2), lupeol (3), 3β‐acetoxy‐olean‐12‐en‐11‐one (4), lupenyl acetate (5), taraxastan‐3,20‐diol (6), 3′‐ (3‐methylbut‐2‐enyl) biochanin A (7), derrone (8), quercetin (9), stigmasterol (10), and stigmasterol glycoside (11) were isolated from stem barks of Ficus sur Forssk. Their structures were obtained through analysis of spectroscopic data 1D and 2D NMR), mass spectrometry, and by comparison of these data with the literature. Nine isolated compounds (1–7, 10, 11) were tested as the active wighteone metabolite previously isolated from the roots of this plant against the human HepG2 hepatocellular carcinoma cells and a small panel of sensitive microbial strains for structure‐ activity relationship purpose. The compounds didn't show any activity. With the aim of understanding the impact of the structural difference between wighteone metabolite and its analogs, the former were cross‐docked to evaluate their anticancer properties via the apoptosis pathway. Wighteone metabolite proved to be the best ligand confirming its previous bioassay result. Thus, the current study lays the framework for the further optimization of wighteone metabolite regarding its anticancer activity.</abstract><cop>Switzerland</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39236275</pmid><doi>10.1002/cbdv.202401270</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1612-1872
ispartof Chemistry & biodiversity, 2025-01, Vol.22 (1), p.e202401270-n/a
issn 1612-1872
1612-1880
1612-1880
language eng
recordid cdi_proquest_miscellaneous_3101232052
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acetic acid
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - isolation & purification
Anti-Bacterial Agents - metabolism
Anti-Bacterial Agents - pharmacology
Anticancer properties
Antineoplastic Agents, Phytogenic - chemistry
Antineoplastic Agents, Phytogenic - isolation & purification
Antineoplastic Agents, Phytogenic - metabolism
Antineoplastic Agents, Phytogenic - pharmacology
Antitumor activity
Apoptosis
Bioactive compounds
Bioassays
Biochanin A
Cancer
Cell Proliferation - drug effects
Cell Survival - drug effects
Dose-Response Relationship, Drug
Drug Screening Assays, Antitumor
Ficus - chemistry
Ficus - metabolism
Ficus sur
Glycosides
Hep G2 Cells
Hepatocellular carcinoma
Humans
Liver cancer
Mass spectrometry
Mass spectroscopy
Metabolites
Microbial Sensitivity Tests
Microorganisms
Molecular docking
Molecular Structure
NMR
Nuclear magnetic resonance
Optimization
Plant cells
Quercetin
SAR
Secondary metabolites
Structure-Activity Relationship
Two dimensional analysis
Wighteone metabolite
title In Vitro and In Silico Studies of the Biological Activities of Some Secondary Metabolites Belonging to Ficus sur Forssk (Moraceae): Towards Optimization of Wighteone Metabolite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vitro%20and%20In%20Silico%20Studies%20of%20the%20Biological%20Activities%20of%20Some%20Secondary%20Metabolites%20Belonging%20to%20Ficus%20sur%20Forssk%20(Moraceae):%20Towards%20Optimization%20of%20Wighteone%20Metabolite&rft.jtitle=Chemistry%20&%20biodiversity&rft.au=Ngoh%20Misse%20Mouelle,%20Eitel&rft.date=2025-01&rft.volume=22&rft.issue=1&rft.spage=e202401270&rft.epage=n/a&rft.pages=e202401270-n/a&rft.issn=1612-1872&rft.eissn=1612-1880&rft_id=info:doi/10.1002/cbdv.202401270&rft_dat=%3Cproquest_cross%3E3156533565%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3156533565&rft_id=info:pmid/39236275&rfr_iscdi=true