In Vitro and In Silico Studies of the Biological Activities of Some Secondary Metabolites Belonging to Ficus sur Forssk (Moraceae): Towards Optimization of Wighteone Metabolite
Based on ethnomedicinal and chemotaxonomic records of Ficus plants, Ficus sur Forssk was studied in the search for bioactive compounds. Eleven known compounds including mixture α ‐amyrin acetate and β ‐amyrin acetate (1 and 2), lupeol (3), 3β‐acetoxy‐olean‐12‐en‐11‐one (4), lupenyl acetate (5), tara...
Gespeichert in:
Veröffentlicht in: | Chemistry & biodiversity 2025-01, Vol.22 (1), p.e202401270-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | e202401270 |
container_title | Chemistry & biodiversity |
container_volume | 22 |
creator | Ngoh Misse Mouelle, Eitel Foundikou Nsangou, Mohamed Fofack, Hans Merlin Tsahnang Mboutchak, Dieunedort Koliye, Pierre Roger Amana Ateba, Baruch Ntie‐Kang, Fidele Akone, Sergi Herve Ngeufa Happi, Emmanuel |
description | Based on ethnomedicinal and chemotaxonomic records of Ficus plants, Ficus sur Forssk was studied in the search for bioactive compounds. Eleven known compounds including mixture α ‐amyrin acetate and β ‐amyrin acetate (1 and 2), lupeol (3), 3β‐acetoxy‐olean‐12‐en‐11‐one (4), lupenyl acetate (5), taraxastan‐3,20‐diol (6), 3′‐ (3‐methylbut‐2‐enyl) biochanin A (7), derrone (8), quercetin (9), stigmasterol (10), and stigmasterol glycoside (11) were isolated from stem barks of Ficus sur Forssk. Their structures were obtained through analysis of spectroscopic data 1D and 2D NMR), mass spectrometry, and by comparison of these data with the literature. Nine isolated compounds (1–7, 10, 11) were tested as the active wighteone metabolite previously isolated from the roots of this plant against the human HepG2 hepatocellular carcinoma cells and a small panel of sensitive microbial strains for structure‐ activity relationship purpose. The compounds didn't show any activity. With the aim of understanding the impact of the structural difference between wighteone metabolite and its analogs, the former were cross‐docked to evaluate their anticancer properties via the apoptosis pathway. Wighteone metabolite proved to be the best ligand confirming its previous bioassay result. Thus, the current study lays the framework for the further optimization of wighteone metabolite regarding its anticancer activity. |
doi_str_mv | 10.1002/cbdv.202401270 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3101232052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3156533565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2580-14e53f9f93624a33aca839778e09ed3b5cee327c6d08dd88abf3a27d79fe876a3</originalsourceid><addsrcrecordid>eNqFkU9v0zAYhy0EYqPsyhFZ4jIOLY7dxA63tVCYtGmHbuMYOfabziPJ29nOpvGp-Ii4atchLlz87338yH5_hLzL2CRjjH8ytb2fcManLOOSvSCHWZHxcaYUe7lfS35A3oRwm_h0rl6TA1FyUXCZH5Lfpz29dtEj1b2labN0rTNIl3GwDgLFhsYboDOHLa6c0S09MdHdu7grLrEDugSDvdX-kZ5D1DW2LqbqDFrsV65f0Yh04cwQaBg8XaAP4Sc9PkevDWj4-Jle4oP2NtCLdXSd-6Wjw34j_-FWNxGwh7-8b8mrRrcBjnbziFwtvl7Ov4_PLr6dzk_Oxobnio2zKeSiKZsy_XOqhdBGK1FKqYCVYEWdGwDBpSksU9YqpetGaC6tLBtQstBiRI633rXHuwFCrDoXDLSt7gGHUIksdVxwlvOEfvgHvcXB9-l1icqLXIjNMCKTLWU8huChqdbedalpVcaqTZbVJstqn2W68H6nHeoO7B5_Ci8B5RZ4cC08_kdXzWdfrp_lfwBCTazQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3156533565</pqid></control><display><type>article</type><title>In Vitro and In Silico Studies of the Biological Activities of Some Secondary Metabolites Belonging to Ficus sur Forssk (Moraceae): Towards Optimization of Wighteone Metabolite</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ngoh Misse Mouelle, Eitel ; Foundikou Nsangou, Mohamed ; Fofack, Hans Merlin Tsahnang ; Mboutchak, Dieunedort ; Koliye, Pierre Roger ; Amana Ateba, Baruch ; Ntie‐Kang, Fidele ; Akone, Sergi Herve ; Ngeufa Happi, Emmanuel</creator><creatorcontrib>Ngoh Misse Mouelle, Eitel ; Foundikou Nsangou, Mohamed ; Fofack, Hans Merlin Tsahnang ; Mboutchak, Dieunedort ; Koliye, Pierre Roger ; Amana Ateba, Baruch ; Ntie‐Kang, Fidele ; Akone, Sergi Herve ; Ngeufa Happi, Emmanuel</creatorcontrib><description>Based on ethnomedicinal and chemotaxonomic records of Ficus plants, Ficus sur Forssk was studied in the search for bioactive compounds. Eleven known compounds including mixture α ‐amyrin acetate and β ‐amyrin acetate (1 and 2), lupeol (3), 3β‐acetoxy‐olean‐12‐en‐11‐one (4), lupenyl acetate (5), taraxastan‐3,20‐diol (6), 3′‐ (3‐methylbut‐2‐enyl) biochanin A (7), derrone (8), quercetin (9), stigmasterol (10), and stigmasterol glycoside (11) were isolated from stem barks of Ficus sur Forssk. Their structures were obtained through analysis of spectroscopic data 1D and 2D NMR), mass spectrometry, and by comparison of these data with the literature. Nine isolated compounds (1–7, 10, 11) were tested as the active wighteone metabolite previously isolated from the roots of this plant against the human HepG2 hepatocellular carcinoma cells and a small panel of sensitive microbial strains for structure‐ activity relationship purpose. The compounds didn't show any activity. With the aim of understanding the impact of the structural difference between wighteone metabolite and its analogs, the former were cross‐docked to evaluate their anticancer properties via the apoptosis pathway. Wighteone metabolite proved to be the best ligand confirming its previous bioassay result. Thus, the current study lays the framework for the further optimization of wighteone metabolite regarding its anticancer activity.</description><identifier>ISSN: 1612-1872</identifier><identifier>ISSN: 1612-1880</identifier><identifier>EISSN: 1612-1880</identifier><identifier>DOI: 10.1002/cbdv.202401270</identifier><identifier>PMID: 39236275</identifier><language>eng</language><publisher>Switzerland: Wiley Subscription Services, Inc</publisher><subject>Acetic acid ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - isolation & purification ; Anti-Bacterial Agents - metabolism ; Anti-Bacterial Agents - pharmacology ; Anticancer properties ; Antineoplastic Agents, Phytogenic - chemistry ; Antineoplastic Agents, Phytogenic - isolation & purification ; Antineoplastic Agents, Phytogenic - metabolism ; Antineoplastic Agents, Phytogenic - pharmacology ; Antitumor activity ; Apoptosis ; Bioactive compounds ; Bioassays ; Biochanin A ; Cancer ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Dose-Response Relationship, Drug ; Drug Screening Assays, Antitumor ; Ficus - chemistry ; Ficus - metabolism ; Ficus sur ; Glycosides ; Hep G2 Cells ; Hepatocellular carcinoma ; Humans ; Liver cancer ; Mass spectrometry ; Mass spectroscopy ; Metabolites ; Microbial Sensitivity Tests ; Microorganisms ; Molecular docking ; Molecular Structure ; NMR ; Nuclear magnetic resonance ; Optimization ; Plant cells ; Quercetin ; SAR ; Secondary metabolites ; Structure-Activity Relationship ; Two dimensional analysis ; Wighteone metabolite</subject><ispartof>Chemistry & biodiversity, 2025-01, Vol.22 (1), p.e202401270-n/a</ispartof><rights>2024 Wiley-VHCA AG, Zurich, Switzerland</rights><rights>2024 Wiley-VHCA AG, Zurich, Switzerland.</rights><rights>2025 Wiley-VHCA AG, Zurich, Switzerland</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2580-14e53f9f93624a33aca839778e09ed3b5cee327c6d08dd88abf3a27d79fe876a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbdv.202401270$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbdv.202401270$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39236275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ngoh Misse Mouelle, Eitel</creatorcontrib><creatorcontrib>Foundikou Nsangou, Mohamed</creatorcontrib><creatorcontrib>Fofack, Hans Merlin Tsahnang</creatorcontrib><creatorcontrib>Mboutchak, Dieunedort</creatorcontrib><creatorcontrib>Koliye, Pierre Roger</creatorcontrib><creatorcontrib>Amana Ateba, Baruch</creatorcontrib><creatorcontrib>Ntie‐Kang, Fidele</creatorcontrib><creatorcontrib>Akone, Sergi Herve</creatorcontrib><creatorcontrib>Ngeufa Happi, Emmanuel</creatorcontrib><title>In Vitro and In Silico Studies of the Biological Activities of Some Secondary Metabolites Belonging to Ficus sur Forssk (Moraceae): Towards Optimization of Wighteone Metabolite</title><title>Chemistry & biodiversity</title><addtitle>Chem Biodivers</addtitle><description>Based on ethnomedicinal and chemotaxonomic records of Ficus plants, Ficus sur Forssk was studied in the search for bioactive compounds. Eleven known compounds including mixture α ‐amyrin acetate and β ‐amyrin acetate (1 and 2), lupeol (3), 3β‐acetoxy‐olean‐12‐en‐11‐one (4), lupenyl acetate (5), taraxastan‐3,20‐diol (6), 3′‐ (3‐methylbut‐2‐enyl) biochanin A (7), derrone (8), quercetin (9), stigmasterol (10), and stigmasterol glycoside (11) were isolated from stem barks of Ficus sur Forssk. Their structures were obtained through analysis of spectroscopic data 1D and 2D NMR), mass spectrometry, and by comparison of these data with the literature. Nine isolated compounds (1–7, 10, 11) were tested as the active wighteone metabolite previously isolated from the roots of this plant against the human HepG2 hepatocellular carcinoma cells and a small panel of sensitive microbial strains for structure‐ activity relationship purpose. The compounds didn't show any activity. With the aim of understanding the impact of the structural difference between wighteone metabolite and its analogs, the former were cross‐docked to evaluate their anticancer properties via the apoptosis pathway. Wighteone metabolite proved to be the best ligand confirming its previous bioassay result. Thus, the current study lays the framework for the further optimization of wighteone metabolite regarding its anticancer activity.</description><subject>Acetic acid</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - isolation & purification</subject><subject>Anti-Bacterial Agents - metabolism</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Anticancer properties</subject><subject>Antineoplastic Agents, Phytogenic - chemistry</subject><subject>Antineoplastic Agents, Phytogenic - isolation & purification</subject><subject>Antineoplastic Agents, Phytogenic - metabolism</subject><subject>Antineoplastic Agents, Phytogenic - pharmacology</subject><subject>Antitumor activity</subject><subject>Apoptosis</subject><subject>Bioactive compounds</subject><subject>Bioassays</subject><subject>Biochanin A</subject><subject>Cancer</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Screening Assays, Antitumor</subject><subject>Ficus - chemistry</subject><subject>Ficus - metabolism</subject><subject>Ficus sur</subject><subject>Glycosides</subject><subject>Hep G2 Cells</subject><subject>Hepatocellular carcinoma</subject><subject>Humans</subject><subject>Liver cancer</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolites</subject><subject>Microbial Sensitivity Tests</subject><subject>Microorganisms</subject><subject>Molecular docking</subject><subject>Molecular Structure</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Optimization</subject><subject>Plant cells</subject><subject>Quercetin</subject><subject>SAR</subject><subject>Secondary metabolites</subject><subject>Structure-Activity Relationship</subject><subject>Two dimensional analysis</subject><subject>Wighteone metabolite</subject><issn>1612-1872</issn><issn>1612-1880</issn><issn>1612-1880</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v0zAYhy0EYqPsyhFZ4jIOLY7dxA63tVCYtGmHbuMYOfabziPJ29nOpvGp-Ii4atchLlz87338yH5_hLzL2CRjjH8ytb2fcManLOOSvSCHWZHxcaYUe7lfS35A3oRwm_h0rl6TA1FyUXCZH5Lfpz29dtEj1b2labN0rTNIl3GwDgLFhsYboDOHLa6c0S09MdHdu7grLrEDugSDvdX-kZ5D1DW2LqbqDFrsV65f0Yh04cwQaBg8XaAP4Sc9PkevDWj4-Jle4oP2NtCLdXSd-6Wjw34j_-FWNxGwh7-8b8mrRrcBjnbziFwtvl7Ov4_PLr6dzk_Oxobnio2zKeSiKZsy_XOqhdBGK1FKqYCVYEWdGwDBpSksU9YqpetGaC6tLBtQstBiRI633rXHuwFCrDoXDLSt7gGHUIksdVxwlvOEfvgHvcXB9-l1icqLXIjNMCKTLWU8huChqdbedalpVcaqTZbVJstqn2W68H6nHeoO7B5_Ci8B5RZ4cC08_kdXzWdfrp_lfwBCTazQ</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Ngoh Misse Mouelle, Eitel</creator><creator>Foundikou Nsangou, Mohamed</creator><creator>Fofack, Hans Merlin Tsahnang</creator><creator>Mboutchak, Dieunedort</creator><creator>Koliye, Pierre Roger</creator><creator>Amana Ateba, Baruch</creator><creator>Ntie‐Kang, Fidele</creator><creator>Akone, Sergi Herve</creator><creator>Ngeufa Happi, Emmanuel</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202501</creationdate><title>In Vitro and In Silico Studies of the Biological Activities of Some Secondary Metabolites Belonging to Ficus sur Forssk (Moraceae): Towards Optimization of Wighteone Metabolite</title><author>Ngoh Misse Mouelle, Eitel ; Foundikou Nsangou, Mohamed ; Fofack, Hans Merlin Tsahnang ; Mboutchak, Dieunedort ; Koliye, Pierre Roger ; Amana Ateba, Baruch ; Ntie‐Kang, Fidele ; Akone, Sergi Herve ; Ngeufa Happi, Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2580-14e53f9f93624a33aca839778e09ed3b5cee327c6d08dd88abf3a27d79fe876a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Acetic acid</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - isolation & purification</topic><topic>Anti-Bacterial Agents - metabolism</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Anticancer properties</topic><topic>Antineoplastic Agents, Phytogenic - chemistry</topic><topic>Antineoplastic Agents, Phytogenic - isolation & purification</topic><topic>Antineoplastic Agents, Phytogenic - metabolism</topic><topic>Antineoplastic Agents, Phytogenic - pharmacology</topic><topic>Antitumor activity</topic><topic>Apoptosis</topic><topic>Bioactive compounds</topic><topic>Bioassays</topic><topic>Biochanin A</topic><topic>Cancer</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Screening Assays, Antitumor</topic><topic>Ficus - chemistry</topic><topic>Ficus - metabolism</topic><topic>Ficus sur</topic><topic>Glycosides</topic><topic>Hep G2 Cells</topic><topic>Hepatocellular carcinoma</topic><topic>Humans</topic><topic>Liver cancer</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolites</topic><topic>Microbial Sensitivity Tests</topic><topic>Microorganisms</topic><topic>Molecular docking</topic><topic>Molecular Structure</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Optimization</topic><topic>Plant cells</topic><topic>Quercetin</topic><topic>SAR</topic><topic>Secondary metabolites</topic><topic>Structure-Activity Relationship</topic><topic>Two dimensional analysis</topic><topic>Wighteone metabolite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ngoh Misse Mouelle, Eitel</creatorcontrib><creatorcontrib>Foundikou Nsangou, Mohamed</creatorcontrib><creatorcontrib>Fofack, Hans Merlin Tsahnang</creatorcontrib><creatorcontrib>Mboutchak, Dieunedort</creatorcontrib><creatorcontrib>Koliye, Pierre Roger</creatorcontrib><creatorcontrib>Amana Ateba, Baruch</creatorcontrib><creatorcontrib>Ntie‐Kang, Fidele</creatorcontrib><creatorcontrib>Akone, Sergi Herve</creatorcontrib><creatorcontrib>Ngeufa Happi, Emmanuel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry & biodiversity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ngoh Misse Mouelle, Eitel</au><au>Foundikou Nsangou, Mohamed</au><au>Fofack, Hans Merlin Tsahnang</au><au>Mboutchak, Dieunedort</au><au>Koliye, Pierre Roger</au><au>Amana Ateba, Baruch</au><au>Ntie‐Kang, Fidele</au><au>Akone, Sergi Herve</au><au>Ngeufa Happi, Emmanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vitro and In Silico Studies of the Biological Activities of Some Secondary Metabolites Belonging to Ficus sur Forssk (Moraceae): Towards Optimization of Wighteone Metabolite</atitle><jtitle>Chemistry & biodiversity</jtitle><addtitle>Chem Biodivers</addtitle><date>2025-01</date><risdate>2025</risdate><volume>22</volume><issue>1</issue><spage>e202401270</spage><epage>n/a</epage><pages>e202401270-n/a</pages><issn>1612-1872</issn><issn>1612-1880</issn><eissn>1612-1880</eissn><abstract>Based on ethnomedicinal and chemotaxonomic records of Ficus plants, Ficus sur Forssk was studied in the search for bioactive compounds. Eleven known compounds including mixture α ‐amyrin acetate and β ‐amyrin acetate (1 and 2), lupeol (3), 3β‐acetoxy‐olean‐12‐en‐11‐one (4), lupenyl acetate (5), taraxastan‐3,20‐diol (6), 3′‐ (3‐methylbut‐2‐enyl) biochanin A (7), derrone (8), quercetin (9), stigmasterol (10), and stigmasterol glycoside (11) were isolated from stem barks of Ficus sur Forssk. Their structures were obtained through analysis of spectroscopic data 1D and 2D NMR), mass spectrometry, and by comparison of these data with the literature. Nine isolated compounds (1–7, 10, 11) were tested as the active wighteone metabolite previously isolated from the roots of this plant against the human HepG2 hepatocellular carcinoma cells and a small panel of sensitive microbial strains for structure‐ activity relationship purpose. The compounds didn't show any activity. With the aim of understanding the impact of the structural difference between wighteone metabolite and its analogs, the former were cross‐docked to evaluate their anticancer properties via the apoptosis pathway. Wighteone metabolite proved to be the best ligand confirming its previous bioassay result. Thus, the current study lays the framework for the further optimization of wighteone metabolite regarding its anticancer activity.</abstract><cop>Switzerland</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39236275</pmid><doi>10.1002/cbdv.202401270</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1612-1872 |
ispartof | Chemistry & biodiversity, 2025-01, Vol.22 (1), p.e202401270-n/a |
issn | 1612-1872 1612-1880 1612-1880 |
language | eng |
recordid | cdi_proquest_miscellaneous_3101232052 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Acetic acid Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - isolation & purification Anti-Bacterial Agents - metabolism Anti-Bacterial Agents - pharmacology Anticancer properties Antineoplastic Agents, Phytogenic - chemistry Antineoplastic Agents, Phytogenic - isolation & purification Antineoplastic Agents, Phytogenic - metabolism Antineoplastic Agents, Phytogenic - pharmacology Antitumor activity Apoptosis Bioactive compounds Bioassays Biochanin A Cancer Cell Proliferation - drug effects Cell Survival - drug effects Dose-Response Relationship, Drug Drug Screening Assays, Antitumor Ficus - chemistry Ficus - metabolism Ficus sur Glycosides Hep G2 Cells Hepatocellular carcinoma Humans Liver cancer Mass spectrometry Mass spectroscopy Metabolites Microbial Sensitivity Tests Microorganisms Molecular docking Molecular Structure NMR Nuclear magnetic resonance Optimization Plant cells Quercetin SAR Secondary metabolites Structure-Activity Relationship Two dimensional analysis Wighteone metabolite |
title | In Vitro and In Silico Studies of the Biological Activities of Some Secondary Metabolites Belonging to Ficus sur Forssk (Moraceae): Towards Optimization of Wighteone Metabolite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vitro%20and%20In%20Silico%20Studies%20of%20the%20Biological%20Activities%20of%20Some%20Secondary%20Metabolites%20Belonging%20to%20Ficus%20sur%20Forssk%20(Moraceae):%20Towards%20Optimization%20of%20Wighteone%20Metabolite&rft.jtitle=Chemistry%20&%20biodiversity&rft.au=Ngoh%20Misse%20Mouelle,%20Eitel&rft.date=2025-01&rft.volume=22&rft.issue=1&rft.spage=e202401270&rft.epage=n/a&rft.pages=e202401270-n/a&rft.issn=1612-1872&rft.eissn=1612-1880&rft_id=info:doi/10.1002/cbdv.202401270&rft_dat=%3Cproquest_cross%3E3156533565%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3156533565&rft_id=info:pmid/39236275&rfr_iscdi=true |