Genetic interactions and pleiotropy in metabolic diseases: Insights from a comprehensive GWAS analysis
This study offers insights into the genetic and biological connections between nine common metabolic diseases using data from genome-wide association studies. Our goal is to unravel the genetic interactions and biological pathways of these complex diseases, enhancing our understanding of their genet...
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2024-09, Vol.28 (17), p.e70045 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 17 |
container_start_page | e70045 |
container_title | Journal of cellular and molecular medicine |
container_volume | 28 |
creator | Shen, Jing Pan, Julong Yu, Gang Cai, Hui Xu, Hua Yan, Hanfei Feng, Yu |
description | This study offers insights into the genetic and biological connections between nine common metabolic diseases using data from genome-wide association studies. Our goal is to unravel the genetic interactions and biological pathways of these complex diseases, enhancing our understanding of their genetic architecture. We employed a range of advanced analytical techniques to explore the genetic correlations and shared genetic variants of these diseases. These methods include Linked Disequilibrium Score Regression, High-Definition Likelihood (HDL), genetic analysis combining multiplicity and annotation (GPA), two-sample Mendelian randomization analyses, analysis under the multiplicity-complex null hypothesis (PLACO), and Functional mapping and annotation of genetic associations (FUMA). Additionally, Bayesian co-localization analyses were used to examine associations of specific loci across traits. Our study discovered significant genomic correlations and shared loci, indicating complex genetic interactions among these metabolic diseases. We found several shared single nucleotide variants and risk loci, notably highlighting the role of the immune system and endocrine pathways in these diseases. Particularly, rs2476601 and its associated gene PTPN22 appear to play a crucial role in the connection between type 2 diabetes mellitus, hypothyroidism/mucous oedema and hypoglycaemia. These findings enhance our understanding of the genetic underpinnings of these diseases and open new potential avenues for targeted therapeutic and preventive strategies. The results underscore the importance of considering pleiotropic effects in deciphering the genetic architecture of complex diseases, especially metabolic ones. |
doi_str_mv | 10.1111/jcmm.70045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3101232035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101232035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-2ec77a3ad2ca804bf4eb6ee76ede3f017a935f4c05f60ae0c02dfc9d5eae30533</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMofl_8ARLwIkLXSaef3hbRVVjwoOKxpOnEzdI2NekK---N6-rBucww8_AyPIydCZiIUNdL1XWTHCBJd9ihSIs4SkpMdrezKLA4YEfeLwEwE1juswMsYywgh0OmZ9TTaBQ3_UhOqtHY3nPZN3xoydjR2WEdbryjUda2DWBjPElP_oY_9t68L0bPtbMdl1zZbnC0oLD-JD57mz6HINmuvfEnbE_L1tPpth-z1_u7l9uHaP40e7ydziMVl8kYxaTyXKJsYiULSGqdUJ0R5Rk1hBpELktMdaIg1RlIAgVxo1XZpCQJIUU8Zpc_uYOzHyvyY9UZr6htZU925SsUIGKMAdOAXvxDl3blwr8bCvNUiCIL1NUPpZz13pGuBmc66daVgOrbfvVtv9rYD_D5NnJVd9T8ob-68Qv19YGH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103751186</pqid></control><display><type>article</type><title>Genetic interactions and pleiotropy in metabolic diseases: Insights from a comprehensive GWAS analysis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><creator>Shen, Jing ; Pan, Julong ; Yu, Gang ; Cai, Hui ; Xu, Hua ; Yan, Hanfei ; Feng, Yu</creator><creatorcontrib>Shen, Jing ; Pan, Julong ; Yu, Gang ; Cai, Hui ; Xu, Hua ; Yan, Hanfei ; Feng, Yu</creatorcontrib><description>This study offers insights into the genetic and biological connections between nine common metabolic diseases using data from genome-wide association studies. Our goal is to unravel the genetic interactions and biological pathways of these complex diseases, enhancing our understanding of their genetic architecture. We employed a range of advanced analytical techniques to explore the genetic correlations and shared genetic variants of these diseases. These methods include Linked Disequilibrium Score Regression, High-Definition Likelihood (HDL), genetic analysis combining multiplicity and annotation (GPA), two-sample Mendelian randomization analyses, analysis under the multiplicity-complex null hypothesis (PLACO), and Functional mapping and annotation of genetic associations (FUMA). Additionally, Bayesian co-localization analyses were used to examine associations of specific loci across traits. Our study discovered significant genomic correlations and shared loci, indicating complex genetic interactions among these metabolic diseases. We found several shared single nucleotide variants and risk loci, notably highlighting the role of the immune system and endocrine pathways in these diseases. Particularly, rs2476601 and its associated gene PTPN22 appear to play a crucial role in the connection between type 2 diabetes mellitus, hypothyroidism/mucous oedema and hypoglycaemia. These findings enhance our understanding of the genetic underpinnings of these diseases and open new potential avenues for targeted therapeutic and preventive strategies. The results underscore the importance of considering pleiotropic effects in deciphering the genetic architecture of complex diseases, especially metabolic ones.</description><identifier>ISSN: 1582-1838</identifier><identifier>ISSN: 1582-4934</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.70045</identifier><identifier>PMID: 39238070</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Bayes Theorem ; Bayesian analysis ; Biobanks ; Cushing syndrome ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - genetics ; Disease prevention ; Edema ; Epistasis, Genetic ; Etiology ; Gene loci ; Gene mapping ; Genetic analysis ; Genetic diversity ; Genetic Pleiotropy ; Genetic Predisposition to Disease ; Genome-Wide Association Study ; Genomes ; Genomic analysis ; High density lipoprotein ; Humans ; Hypertension ; Hyperthyroidism ; Hypoglycemia ; Hypothyroidism ; Immune system ; Linkage Disequilibrium - genetics ; Localization ; Mendelian Randomization Analysis ; Metabolic Diseases - genetics ; Metabolic disorders ; Osteoporosis ; Pleiotropy ; Polymorphism, Single Nucleotide - genetics ; Protein-tyrosine-phosphatase ; Rheumatism</subject><ispartof>Journal of cellular and molecular medicine, 2024-09, Vol.28 (17), p.e70045</ispartof><rights>2024 The Author(s). Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-2ec77a3ad2ca804bf4eb6ee76ede3f017a935f4c05f60ae0c02dfc9d5eae30533</cites><orcidid>0009-0008-4746-1070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39238070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Jing</creatorcontrib><creatorcontrib>Pan, Julong</creatorcontrib><creatorcontrib>Yu, Gang</creatorcontrib><creatorcontrib>Cai, Hui</creatorcontrib><creatorcontrib>Xu, Hua</creatorcontrib><creatorcontrib>Yan, Hanfei</creatorcontrib><creatorcontrib>Feng, Yu</creatorcontrib><title>Genetic interactions and pleiotropy in metabolic diseases: Insights from a comprehensive GWAS analysis</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>This study offers insights into the genetic and biological connections between nine common metabolic diseases using data from genome-wide association studies. Our goal is to unravel the genetic interactions and biological pathways of these complex diseases, enhancing our understanding of their genetic architecture. We employed a range of advanced analytical techniques to explore the genetic correlations and shared genetic variants of these diseases. These methods include Linked Disequilibrium Score Regression, High-Definition Likelihood (HDL), genetic analysis combining multiplicity and annotation (GPA), two-sample Mendelian randomization analyses, analysis under the multiplicity-complex null hypothesis (PLACO), and Functional mapping and annotation of genetic associations (FUMA). Additionally, Bayesian co-localization analyses were used to examine associations of specific loci across traits. Our study discovered significant genomic correlations and shared loci, indicating complex genetic interactions among these metabolic diseases. We found several shared single nucleotide variants and risk loci, notably highlighting the role of the immune system and endocrine pathways in these diseases. Particularly, rs2476601 and its associated gene PTPN22 appear to play a crucial role in the connection between type 2 diabetes mellitus, hypothyroidism/mucous oedema and hypoglycaemia. These findings enhance our understanding of the genetic underpinnings of these diseases and open new potential avenues for targeted therapeutic and preventive strategies. The results underscore the importance of considering pleiotropic effects in deciphering the genetic architecture of complex diseases, especially metabolic ones.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biobanks</subject><subject>Cushing syndrome</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - genetics</subject><subject>Disease prevention</subject><subject>Edema</subject><subject>Epistasis, Genetic</subject><subject>Etiology</subject><subject>Gene loci</subject><subject>Gene mapping</subject><subject>Genetic analysis</subject><subject>Genetic diversity</subject><subject>Genetic Pleiotropy</subject><subject>Genetic Predisposition to Disease</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genomic analysis</subject><subject>High density lipoprotein</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Hyperthyroidism</subject><subject>Hypoglycemia</subject><subject>Hypothyroidism</subject><subject>Immune system</subject><subject>Linkage Disequilibrium - genetics</subject><subject>Localization</subject><subject>Mendelian Randomization Analysis</subject><subject>Metabolic Diseases - genetics</subject><subject>Metabolic disorders</subject><subject>Osteoporosis</subject><subject>Pleiotropy</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Protein-tyrosine-phosphatase</subject><subject>Rheumatism</subject><issn>1582-1838</issn><issn>1582-4934</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkE1LxDAQhoMofl_8ARLwIkLXSaef3hbRVVjwoOKxpOnEzdI2NekK---N6-rBucww8_AyPIydCZiIUNdL1XWTHCBJd9ihSIs4SkpMdrezKLA4YEfeLwEwE1juswMsYywgh0OmZ9TTaBQ3_UhOqtHY3nPZN3xoydjR2WEdbryjUda2DWBjPElP_oY_9t68L0bPtbMdl1zZbnC0oLD-JD57mz6HINmuvfEnbE_L1tPpth-z1_u7l9uHaP40e7ydziMVl8kYxaTyXKJsYiULSGqdUJ0R5Rk1hBpELktMdaIg1RlIAgVxo1XZpCQJIUU8Zpc_uYOzHyvyY9UZr6htZU925SsUIGKMAdOAXvxDl3blwr8bCvNUiCIL1NUPpZz13pGuBmc66daVgOrbfvVtv9rYD_D5NnJVd9T8ob-68Qv19YGH</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Shen, Jing</creator><creator>Pan, Julong</creator><creator>Yu, Gang</creator><creator>Cai, Hui</creator><creator>Xu, Hua</creator><creator>Yan, Hanfei</creator><creator>Feng, Yu</creator><general>John Wiley & Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0008-4746-1070</orcidid></search><sort><creationdate>202409</creationdate><title>Genetic interactions and pleiotropy in metabolic diseases: Insights from a comprehensive GWAS analysis</title><author>Shen, Jing ; Pan, Julong ; Yu, Gang ; Cai, Hui ; Xu, Hua ; Yan, Hanfei ; Feng, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-2ec77a3ad2ca804bf4eb6ee76ede3f017a935f4c05f60ae0c02dfc9d5eae30533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biobanks</topic><topic>Cushing syndrome</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - genetics</topic><topic>Disease prevention</topic><topic>Edema</topic><topic>Epistasis, Genetic</topic><topic>Etiology</topic><topic>Gene loci</topic><topic>Gene mapping</topic><topic>Genetic analysis</topic><topic>Genetic diversity</topic><topic>Genetic Pleiotropy</topic><topic>Genetic Predisposition to Disease</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genomic analysis</topic><topic>High density lipoprotein</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Hyperthyroidism</topic><topic>Hypoglycemia</topic><topic>Hypothyroidism</topic><topic>Immune system</topic><topic>Linkage Disequilibrium - genetics</topic><topic>Localization</topic><topic>Mendelian Randomization Analysis</topic><topic>Metabolic Diseases - genetics</topic><topic>Metabolic disorders</topic><topic>Osteoporosis</topic><topic>Pleiotropy</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Protein-tyrosine-phosphatase</topic><topic>Rheumatism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Jing</creatorcontrib><creatorcontrib>Pan, Julong</creatorcontrib><creatorcontrib>Yu, Gang</creatorcontrib><creatorcontrib>Cai, Hui</creatorcontrib><creatorcontrib>Xu, Hua</creatorcontrib><creatorcontrib>Yan, Hanfei</creatorcontrib><creatorcontrib>Feng, Yu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Jing</au><au>Pan, Julong</au><au>Yu, Gang</au><au>Cai, Hui</au><au>Xu, Hua</au><au>Yan, Hanfei</au><au>Feng, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic interactions and pleiotropy in metabolic diseases: Insights from a comprehensive GWAS analysis</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2024-09</date><risdate>2024</risdate><volume>28</volume><issue>17</issue><spage>e70045</spage><pages>e70045-</pages><issn>1582-1838</issn><issn>1582-4934</issn><eissn>1582-4934</eissn><abstract>This study offers insights into the genetic and biological connections between nine common metabolic diseases using data from genome-wide association studies. Our goal is to unravel the genetic interactions and biological pathways of these complex diseases, enhancing our understanding of their genetic architecture. We employed a range of advanced analytical techniques to explore the genetic correlations and shared genetic variants of these diseases. These methods include Linked Disequilibrium Score Regression, High-Definition Likelihood (HDL), genetic analysis combining multiplicity and annotation (GPA), two-sample Mendelian randomization analyses, analysis under the multiplicity-complex null hypothesis (PLACO), and Functional mapping and annotation of genetic associations (FUMA). Additionally, Bayesian co-localization analyses were used to examine associations of specific loci across traits. Our study discovered significant genomic correlations and shared loci, indicating complex genetic interactions among these metabolic diseases. We found several shared single nucleotide variants and risk loci, notably highlighting the role of the immune system and endocrine pathways in these diseases. Particularly, rs2476601 and its associated gene PTPN22 appear to play a crucial role in the connection between type 2 diabetes mellitus, hypothyroidism/mucous oedema and hypoglycaemia. These findings enhance our understanding of the genetic underpinnings of these diseases and open new potential avenues for targeted therapeutic and preventive strategies. The results underscore the importance of considering pleiotropic effects in deciphering the genetic architecture of complex diseases, especially metabolic ones.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>39238070</pmid><doi>10.1111/jcmm.70045</doi><orcidid>https://orcid.org/0009-0008-4746-1070</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2024-09, Vol.28 (17), p.e70045 |
issn | 1582-1838 1582-4934 1582-4934 |
language | eng |
recordid | cdi_proquest_miscellaneous_3101232035 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; PubMed Central |
subjects | Bayes Theorem Bayesian analysis Biobanks Cushing syndrome Diabetes Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 - genetics Disease prevention Edema Epistasis, Genetic Etiology Gene loci Gene mapping Genetic analysis Genetic diversity Genetic Pleiotropy Genetic Predisposition to Disease Genome-Wide Association Study Genomes Genomic analysis High density lipoprotein Humans Hypertension Hyperthyroidism Hypoglycemia Hypothyroidism Immune system Linkage Disequilibrium - genetics Localization Mendelian Randomization Analysis Metabolic Diseases - genetics Metabolic disorders Osteoporosis Pleiotropy Polymorphism, Single Nucleotide - genetics Protein-tyrosine-phosphatase Rheumatism |
title | Genetic interactions and pleiotropy in metabolic diseases: Insights from a comprehensive GWAS analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A04%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20interactions%20and%20pleiotropy%20in%20metabolic%20diseases:%20Insights%20from%20a%20comprehensive%20GWAS%20analysis&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Shen,%20Jing&rft.date=2024-09&rft.volume=28&rft.issue=17&rft.spage=e70045&rft.pages=e70045-&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.70045&rft_dat=%3Cproquest_cross%3E3101232035%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103751186&rft_id=info:pmid/39238070&rfr_iscdi=true |