Genetic interactions and pleiotropy in metabolic diseases: Insights from a comprehensive GWAS analysis

This study offers insights into the genetic and biological connections between nine common metabolic diseases using data from genome-wide association studies. Our goal is to unravel the genetic interactions and biological pathways of these complex diseases, enhancing our understanding of their genet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular and molecular medicine 2024-09, Vol.28 (17), p.e70045
Hauptverfasser: Shen, Jing, Pan, Julong, Yu, Gang, Cai, Hui, Xu, Hua, Yan, Hanfei, Feng, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page e70045
container_title Journal of cellular and molecular medicine
container_volume 28
creator Shen, Jing
Pan, Julong
Yu, Gang
Cai, Hui
Xu, Hua
Yan, Hanfei
Feng, Yu
description This study offers insights into the genetic and biological connections between nine common metabolic diseases using data from genome-wide association studies. Our goal is to unravel the genetic interactions and biological pathways of these complex diseases, enhancing our understanding of their genetic architecture. We employed a range of advanced analytical techniques to explore the genetic correlations and shared genetic variants of these diseases. These methods include Linked Disequilibrium Score Regression, High-Definition Likelihood (HDL), genetic analysis combining multiplicity and annotation (GPA), two-sample Mendelian randomization analyses, analysis under the multiplicity-complex null hypothesis (PLACO), and Functional mapping and annotation of genetic associations (FUMA). Additionally, Bayesian co-localization analyses were used to examine associations of specific loci across traits. Our study discovered significant genomic correlations and shared loci, indicating complex genetic interactions among these metabolic diseases. We found several shared single nucleotide variants and risk loci, notably highlighting the role of the immune system and endocrine pathways in these diseases. Particularly, rs2476601 and its associated gene PTPN22 appear to play a crucial role in the connection between type 2 diabetes mellitus, hypothyroidism/mucous oedema and hypoglycaemia. These findings enhance our understanding of the genetic underpinnings of these diseases and open new potential avenues for targeted therapeutic and preventive strategies. The results underscore the importance of considering pleiotropic effects in deciphering the genetic architecture of complex diseases, especially metabolic ones.
doi_str_mv 10.1111/jcmm.70045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3101232035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101232035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-2ec77a3ad2ca804bf4eb6ee76ede3f017a935f4c05f60ae0c02dfc9d5eae30533</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMofl_8ARLwIkLXSaef3hbRVVjwoOKxpOnEzdI2NekK---N6-rBucww8_AyPIydCZiIUNdL1XWTHCBJd9ihSIs4SkpMdrezKLA4YEfeLwEwE1juswMsYywgh0OmZ9TTaBQ3_UhOqtHY3nPZN3xoydjR2WEdbryjUda2DWBjPElP_oY_9t68L0bPtbMdl1zZbnC0oLD-JD57mz6HINmuvfEnbE_L1tPpth-z1_u7l9uHaP40e7ydziMVl8kYxaTyXKJsYiULSGqdUJ0R5Rk1hBpELktMdaIg1RlIAgVxo1XZpCQJIUU8Zpc_uYOzHyvyY9UZr6htZU925SsUIGKMAdOAXvxDl3blwr8bCvNUiCIL1NUPpZz13pGuBmc66daVgOrbfvVtv9rYD_D5NnJVd9T8ob-68Qv19YGH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103751186</pqid></control><display><type>article</type><title>Genetic interactions and pleiotropy in metabolic diseases: Insights from a comprehensive GWAS analysis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><creator>Shen, Jing ; Pan, Julong ; Yu, Gang ; Cai, Hui ; Xu, Hua ; Yan, Hanfei ; Feng, Yu</creator><creatorcontrib>Shen, Jing ; Pan, Julong ; Yu, Gang ; Cai, Hui ; Xu, Hua ; Yan, Hanfei ; Feng, Yu</creatorcontrib><description>This study offers insights into the genetic and biological connections between nine common metabolic diseases using data from genome-wide association studies. Our goal is to unravel the genetic interactions and biological pathways of these complex diseases, enhancing our understanding of their genetic architecture. We employed a range of advanced analytical techniques to explore the genetic correlations and shared genetic variants of these diseases. These methods include Linked Disequilibrium Score Regression, High-Definition Likelihood (HDL), genetic analysis combining multiplicity and annotation (GPA), two-sample Mendelian randomization analyses, analysis under the multiplicity-complex null hypothesis (PLACO), and Functional mapping and annotation of genetic associations (FUMA). Additionally, Bayesian co-localization analyses were used to examine associations of specific loci across traits. Our study discovered significant genomic correlations and shared loci, indicating complex genetic interactions among these metabolic diseases. We found several shared single nucleotide variants and risk loci, notably highlighting the role of the immune system and endocrine pathways in these diseases. Particularly, rs2476601 and its associated gene PTPN22 appear to play a crucial role in the connection between type 2 diabetes mellitus, hypothyroidism/mucous oedema and hypoglycaemia. These findings enhance our understanding of the genetic underpinnings of these diseases and open new potential avenues for targeted therapeutic and preventive strategies. The results underscore the importance of considering pleiotropic effects in deciphering the genetic architecture of complex diseases, especially metabolic ones.</description><identifier>ISSN: 1582-1838</identifier><identifier>ISSN: 1582-4934</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.70045</identifier><identifier>PMID: 39238070</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Bayes Theorem ; Bayesian analysis ; Biobanks ; Cushing syndrome ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - genetics ; Disease prevention ; Edema ; Epistasis, Genetic ; Etiology ; Gene loci ; Gene mapping ; Genetic analysis ; Genetic diversity ; Genetic Pleiotropy ; Genetic Predisposition to Disease ; Genome-Wide Association Study ; Genomes ; Genomic analysis ; High density lipoprotein ; Humans ; Hypertension ; Hyperthyroidism ; Hypoglycemia ; Hypothyroidism ; Immune system ; Linkage Disequilibrium - genetics ; Localization ; Mendelian Randomization Analysis ; Metabolic Diseases - genetics ; Metabolic disorders ; Osteoporosis ; Pleiotropy ; Polymorphism, Single Nucleotide - genetics ; Protein-tyrosine-phosphatase ; Rheumatism</subject><ispartof>Journal of cellular and molecular medicine, 2024-09, Vol.28 (17), p.e70045</ispartof><rights>2024 The Author(s). Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley &amp; Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-2ec77a3ad2ca804bf4eb6ee76ede3f017a935f4c05f60ae0c02dfc9d5eae30533</cites><orcidid>0009-0008-4746-1070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39238070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Jing</creatorcontrib><creatorcontrib>Pan, Julong</creatorcontrib><creatorcontrib>Yu, Gang</creatorcontrib><creatorcontrib>Cai, Hui</creatorcontrib><creatorcontrib>Xu, Hua</creatorcontrib><creatorcontrib>Yan, Hanfei</creatorcontrib><creatorcontrib>Feng, Yu</creatorcontrib><title>Genetic interactions and pleiotropy in metabolic diseases: Insights from a comprehensive GWAS analysis</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>This study offers insights into the genetic and biological connections between nine common metabolic diseases using data from genome-wide association studies. Our goal is to unravel the genetic interactions and biological pathways of these complex diseases, enhancing our understanding of their genetic architecture. We employed a range of advanced analytical techniques to explore the genetic correlations and shared genetic variants of these diseases. These methods include Linked Disequilibrium Score Regression, High-Definition Likelihood (HDL), genetic analysis combining multiplicity and annotation (GPA), two-sample Mendelian randomization analyses, analysis under the multiplicity-complex null hypothesis (PLACO), and Functional mapping and annotation of genetic associations (FUMA). Additionally, Bayesian co-localization analyses were used to examine associations of specific loci across traits. Our study discovered significant genomic correlations and shared loci, indicating complex genetic interactions among these metabolic diseases. We found several shared single nucleotide variants and risk loci, notably highlighting the role of the immune system and endocrine pathways in these diseases. Particularly, rs2476601 and its associated gene PTPN22 appear to play a crucial role in the connection between type 2 diabetes mellitus, hypothyroidism/mucous oedema and hypoglycaemia. These findings enhance our understanding of the genetic underpinnings of these diseases and open new potential avenues for targeted therapeutic and preventive strategies. The results underscore the importance of considering pleiotropic effects in deciphering the genetic architecture of complex diseases, especially metabolic ones.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biobanks</subject><subject>Cushing syndrome</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - genetics</subject><subject>Disease prevention</subject><subject>Edema</subject><subject>Epistasis, Genetic</subject><subject>Etiology</subject><subject>Gene loci</subject><subject>Gene mapping</subject><subject>Genetic analysis</subject><subject>Genetic diversity</subject><subject>Genetic Pleiotropy</subject><subject>Genetic Predisposition to Disease</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genomic analysis</subject><subject>High density lipoprotein</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Hyperthyroidism</subject><subject>Hypoglycemia</subject><subject>Hypothyroidism</subject><subject>Immune system</subject><subject>Linkage Disequilibrium - genetics</subject><subject>Localization</subject><subject>Mendelian Randomization Analysis</subject><subject>Metabolic Diseases - genetics</subject><subject>Metabolic disorders</subject><subject>Osteoporosis</subject><subject>Pleiotropy</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Protein-tyrosine-phosphatase</subject><subject>Rheumatism</subject><issn>1582-1838</issn><issn>1582-4934</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkE1LxDAQhoMofl_8ARLwIkLXSaef3hbRVVjwoOKxpOnEzdI2NekK---N6-rBucww8_AyPIydCZiIUNdL1XWTHCBJd9ihSIs4SkpMdrezKLA4YEfeLwEwE1juswMsYywgh0OmZ9TTaBQ3_UhOqtHY3nPZN3xoydjR2WEdbryjUda2DWBjPElP_oY_9t68L0bPtbMdl1zZbnC0oLD-JD57mz6HINmuvfEnbE_L1tPpth-z1_u7l9uHaP40e7ydziMVl8kYxaTyXKJsYiULSGqdUJ0R5Rk1hBpELktMdaIg1RlIAgVxo1XZpCQJIUU8Zpc_uYOzHyvyY9UZr6htZU925SsUIGKMAdOAXvxDl3blwr8bCvNUiCIL1NUPpZz13pGuBmc66daVgOrbfvVtv9rYD_D5NnJVd9T8ob-68Qv19YGH</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Shen, Jing</creator><creator>Pan, Julong</creator><creator>Yu, Gang</creator><creator>Cai, Hui</creator><creator>Xu, Hua</creator><creator>Yan, Hanfei</creator><creator>Feng, Yu</creator><general>John Wiley &amp; Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0008-4746-1070</orcidid></search><sort><creationdate>202409</creationdate><title>Genetic interactions and pleiotropy in metabolic diseases: Insights from a comprehensive GWAS analysis</title><author>Shen, Jing ; Pan, Julong ; Yu, Gang ; Cai, Hui ; Xu, Hua ; Yan, Hanfei ; Feng, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-2ec77a3ad2ca804bf4eb6ee76ede3f017a935f4c05f60ae0c02dfc9d5eae30533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biobanks</topic><topic>Cushing syndrome</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - genetics</topic><topic>Disease prevention</topic><topic>Edema</topic><topic>Epistasis, Genetic</topic><topic>Etiology</topic><topic>Gene loci</topic><topic>Gene mapping</topic><topic>Genetic analysis</topic><topic>Genetic diversity</topic><topic>Genetic Pleiotropy</topic><topic>Genetic Predisposition to Disease</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genomic analysis</topic><topic>High density lipoprotein</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Hyperthyroidism</topic><topic>Hypoglycemia</topic><topic>Hypothyroidism</topic><topic>Immune system</topic><topic>Linkage Disequilibrium - genetics</topic><topic>Localization</topic><topic>Mendelian Randomization Analysis</topic><topic>Metabolic Diseases - genetics</topic><topic>Metabolic disorders</topic><topic>Osteoporosis</topic><topic>Pleiotropy</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Protein-tyrosine-phosphatase</topic><topic>Rheumatism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Jing</creatorcontrib><creatorcontrib>Pan, Julong</creatorcontrib><creatorcontrib>Yu, Gang</creatorcontrib><creatorcontrib>Cai, Hui</creatorcontrib><creatorcontrib>Xu, Hua</creatorcontrib><creatorcontrib>Yan, Hanfei</creatorcontrib><creatorcontrib>Feng, Yu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Jing</au><au>Pan, Julong</au><au>Yu, Gang</au><au>Cai, Hui</au><au>Xu, Hua</au><au>Yan, Hanfei</au><au>Feng, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic interactions and pleiotropy in metabolic diseases: Insights from a comprehensive GWAS analysis</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2024-09</date><risdate>2024</risdate><volume>28</volume><issue>17</issue><spage>e70045</spage><pages>e70045-</pages><issn>1582-1838</issn><issn>1582-4934</issn><eissn>1582-4934</eissn><abstract>This study offers insights into the genetic and biological connections between nine common metabolic diseases using data from genome-wide association studies. Our goal is to unravel the genetic interactions and biological pathways of these complex diseases, enhancing our understanding of their genetic architecture. We employed a range of advanced analytical techniques to explore the genetic correlations and shared genetic variants of these diseases. These methods include Linked Disequilibrium Score Regression, High-Definition Likelihood (HDL), genetic analysis combining multiplicity and annotation (GPA), two-sample Mendelian randomization analyses, analysis under the multiplicity-complex null hypothesis (PLACO), and Functional mapping and annotation of genetic associations (FUMA). Additionally, Bayesian co-localization analyses were used to examine associations of specific loci across traits. Our study discovered significant genomic correlations and shared loci, indicating complex genetic interactions among these metabolic diseases. We found several shared single nucleotide variants and risk loci, notably highlighting the role of the immune system and endocrine pathways in these diseases. Particularly, rs2476601 and its associated gene PTPN22 appear to play a crucial role in the connection between type 2 diabetes mellitus, hypothyroidism/mucous oedema and hypoglycaemia. These findings enhance our understanding of the genetic underpinnings of these diseases and open new potential avenues for targeted therapeutic and preventive strategies. The results underscore the importance of considering pleiotropic effects in deciphering the genetic architecture of complex diseases, especially metabolic ones.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>39238070</pmid><doi>10.1111/jcmm.70045</doi><orcidid>https://orcid.org/0009-0008-4746-1070</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1582-1838
ispartof Journal of cellular and molecular medicine, 2024-09, Vol.28 (17), p.e70045
issn 1582-1838
1582-4934
1582-4934
language eng
recordid cdi_proquest_miscellaneous_3101232035
source MEDLINE; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; PubMed Central
subjects Bayes Theorem
Bayesian analysis
Biobanks
Cushing syndrome
Diabetes
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - genetics
Disease prevention
Edema
Epistasis, Genetic
Etiology
Gene loci
Gene mapping
Genetic analysis
Genetic diversity
Genetic Pleiotropy
Genetic Predisposition to Disease
Genome-Wide Association Study
Genomes
Genomic analysis
High density lipoprotein
Humans
Hypertension
Hyperthyroidism
Hypoglycemia
Hypothyroidism
Immune system
Linkage Disequilibrium - genetics
Localization
Mendelian Randomization Analysis
Metabolic Diseases - genetics
Metabolic disorders
Osteoporosis
Pleiotropy
Polymorphism, Single Nucleotide - genetics
Protein-tyrosine-phosphatase
Rheumatism
title Genetic interactions and pleiotropy in metabolic diseases: Insights from a comprehensive GWAS analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A04%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20interactions%20and%20pleiotropy%20in%20metabolic%20diseases:%20Insights%20from%20a%20comprehensive%20GWAS%20analysis&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Shen,%20Jing&rft.date=2024-09&rft.volume=28&rft.issue=17&rft.spage=e70045&rft.pages=e70045-&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.70045&rft_dat=%3Cproquest_cross%3E3101232035%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103751186&rft_id=info:pmid/39238070&rfr_iscdi=true