Breaking the activity–selectivity trade-off of CO2 hydrogenation to light olefins
Catalytic hydrogenation of CO2 to value-added fuels and chemicals is of great importance to carbon neutrality but suffers from an activity–selectivity trade-off, leading to limited catalytic performance. Herein, the ZnFeAlO4 + SAPO-34 composite catalyst was designed, which can simultaneously achieve...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2024-09, Vol.121 (37), p.1 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 37 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 121 |
creator | Wang, Xiaoyue Zeng, Ting Guo, Xiaohong Yan, Zhiqiang Ban, Hongyan Yao, Ruwei Li, Congming Gu, Xiang-Kui Ding, Mingyue |
description | Catalytic hydrogenation of CO2 to value-added fuels and chemicals is of great importance to carbon neutrality but suffers from an activity–selectivity trade-off, leading to limited catalytic performance. Herein, the ZnFeAlO4 + SAPO-34 composite catalyst was designed, which can simultaneously achieve a CO2 conversion of 42%, a CO selectivity of 50%, and a C2–C4= selectivity of 83%, resulting in a C2–C4= yield of almost 18%. This superior catalytic performance was found to be from the presence of unconventional electron-deficient tetrahedral Fe sites and electron-enriched octahedral Zn sites in the ZnFeAlO4 spinel, which were active for the CO2 deoxygenation to CO via the reverse water gas shift reaction, and CO hydrogenation to CH3OH, respectively, leading to a route for CO2 hydrogenation to C2–C4=, where the kinetics of CO2 activation can be improved, the mass transfer of CO hydrogenation can be minimized, and the C2–C4= selectivity can be enhanced via modifying the acid density of SAPO-34. Moreover, the spinel structure of ZnFeAlO4 possessed a strong ability to stabilize the active Fe and Zn sites even at elevated temperatures, resulting in long-term stability of over 450 h for this process, exhibiting great potential for large-scale applications. |
doi_str_mv | 10.1073/pnas.2408297121 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_3101231906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3106761648</sourcerecordid><originalsourceid>FETCH-LOGICAL-p616-be93c80863a88d31005a741892e54ef67c6c98a1691a7561e46e28db89dcbcad3</originalsourceid><addsrcrecordid>eNpdjstKAzEYRoMoWKtrtwE3bqb-yWRyWWrxBoUu7L6kmX_a1DGpk4zQne_gG_okjtiVq48PDodDyCWDCQNV3uyCTRMuQHOjGGdHZMTAsEIKA8dkBMBVoQUXp-QspS0AmErDiLzcdWhffVjTvEFqXfYfPu-_P78Stnh4NHe2xiI2DY0Nnc453ezrLq4x2OxjoDnS1q83mcYWGx_SOTlpbJvw4rBjsni4X0yfitn88Xl6Oyt2kslihaZ0GrQsrdZ1yQAqqwTThmMlsJHKSWe0ZdIwqyrJUEjkul5pU7uVs3U5Jtd_2l0X33tMefnmk8O2tQFjn5aDkvGSGZADevUP3ca-C0PcLyXV0CN0-QPxUGDz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106761648</pqid></control><display><type>article</type><title>Breaking the activity–selectivity trade-off of CO2 hydrogenation to light olefins</title><source>Alma/SFX Local Collection</source><creator>Wang, Xiaoyue ; Zeng, Ting ; Guo, Xiaohong ; Yan, Zhiqiang ; Ban, Hongyan ; Yao, Ruwei ; Li, Congming ; Gu, Xiang-Kui ; Ding, Mingyue</creator><creatorcontrib>Wang, Xiaoyue ; Zeng, Ting ; Guo, Xiaohong ; Yan, Zhiqiang ; Ban, Hongyan ; Yao, Ruwei ; Li, Congming ; Gu, Xiang-Kui ; Ding, Mingyue</creatorcontrib><description>Catalytic hydrogenation of CO2 to value-added fuels and chemicals is of great importance to carbon neutrality but suffers from an activity–selectivity trade-off, leading to limited catalytic performance. Herein, the ZnFeAlO4 + SAPO-34 composite catalyst was designed, which can simultaneously achieve a CO2 conversion of 42%, a CO selectivity of 50%, and a C2–C4= selectivity of 83%, resulting in a C2–C4= yield of almost 18%. This superior catalytic performance was found to be from the presence of unconventional electron-deficient tetrahedral Fe sites and electron-enriched octahedral Zn sites in the ZnFeAlO4 spinel, which were active for the CO2 deoxygenation to CO via the reverse water gas shift reaction, and CO hydrogenation to CH3OH, respectively, leading to a route for CO2 hydrogenation to C2–C4=, where the kinetics of CO2 activation can be improved, the mass transfer of CO hydrogenation can be minimized, and the C2–C4= selectivity can be enhanced via modifying the acid density of SAPO-34. Moreover, the spinel structure of ZnFeAlO4 possessed a strong ability to stabilize the active Fe and Zn sites even at elevated temperatures, resulting in long-term stability of over 450 h for this process, exhibiting great potential for large-scale applications.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2408297121</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Alkenes ; Carbon dioxide ; Carbon monoxide ; Catalysts ; Catalytic converters ; Chemical activity ; Deoxygenation ; High temperature ; Hydrogenation ; Mass transfer ; Shift reaction ; Spinel ; Tradeoffs ; Water gas ; Zinc</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-09, Vol.121 (37), p.1</ispartof><rights>Copyright National Academy of Sciences Sep 10, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Wang, Xiaoyue</creatorcontrib><creatorcontrib>Zeng, Ting</creatorcontrib><creatorcontrib>Guo, Xiaohong</creatorcontrib><creatorcontrib>Yan, Zhiqiang</creatorcontrib><creatorcontrib>Ban, Hongyan</creatorcontrib><creatorcontrib>Yao, Ruwei</creatorcontrib><creatorcontrib>Li, Congming</creatorcontrib><creatorcontrib>Gu, Xiang-Kui</creatorcontrib><creatorcontrib>Ding, Mingyue</creatorcontrib><title>Breaking the activity–selectivity trade-off of CO2 hydrogenation to light olefins</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Catalytic hydrogenation of CO2 to value-added fuels and chemicals is of great importance to carbon neutrality but suffers from an activity–selectivity trade-off, leading to limited catalytic performance. Herein, the ZnFeAlO4 + SAPO-34 composite catalyst was designed, which can simultaneously achieve a CO2 conversion of 42%, a CO selectivity of 50%, and a C2–C4= selectivity of 83%, resulting in a C2–C4= yield of almost 18%. This superior catalytic performance was found to be from the presence of unconventional electron-deficient tetrahedral Fe sites and electron-enriched octahedral Zn sites in the ZnFeAlO4 spinel, which were active for the CO2 deoxygenation to CO via the reverse water gas shift reaction, and CO hydrogenation to CH3OH, respectively, leading to a route for CO2 hydrogenation to C2–C4=, where the kinetics of CO2 activation can be improved, the mass transfer of CO hydrogenation can be minimized, and the C2–C4= selectivity can be enhanced via modifying the acid density of SAPO-34. Moreover, the spinel structure of ZnFeAlO4 possessed a strong ability to stabilize the active Fe and Zn sites even at elevated temperatures, resulting in long-term stability of over 450 h for this process, exhibiting great potential for large-scale applications.</description><subject>Alkenes</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Catalysts</subject><subject>Catalytic converters</subject><subject>Chemical activity</subject><subject>Deoxygenation</subject><subject>High temperature</subject><subject>Hydrogenation</subject><subject>Mass transfer</subject><subject>Shift reaction</subject><subject>Spinel</subject><subject>Tradeoffs</subject><subject>Water gas</subject><subject>Zinc</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdjstKAzEYRoMoWKtrtwE3bqb-yWRyWWrxBoUu7L6kmX_a1DGpk4zQne_gG_okjtiVq48PDodDyCWDCQNV3uyCTRMuQHOjGGdHZMTAsEIKA8dkBMBVoQUXp-QspS0AmErDiLzcdWhffVjTvEFqXfYfPu-_P78Stnh4NHe2xiI2DY0Nnc453ezrLq4x2OxjoDnS1q83mcYWGx_SOTlpbJvw4rBjsni4X0yfitn88Xl6Oyt2kslihaZ0GrQsrdZ1yQAqqwTThmMlsJHKSWe0ZdIwqyrJUEjkul5pU7uVs3U5Jtd_2l0X33tMefnmk8O2tQFjn5aDkvGSGZADevUP3ca-C0PcLyXV0CN0-QPxUGDz</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>Wang, Xiaoyue</creator><creator>Zeng, Ting</creator><creator>Guo, Xiaohong</creator><creator>Yan, Zhiqiang</creator><creator>Ban, Hongyan</creator><creator>Yao, Ruwei</creator><creator>Li, Congming</creator><creator>Gu, Xiang-Kui</creator><creator>Ding, Mingyue</creator><general>National Academy of Sciences</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20240910</creationdate><title>Breaking the activity–selectivity trade-off of CO2 hydrogenation to light olefins</title><author>Wang, Xiaoyue ; Zeng, Ting ; Guo, Xiaohong ; Yan, Zhiqiang ; Ban, Hongyan ; Yao, Ruwei ; Li, Congming ; Gu, Xiang-Kui ; Ding, Mingyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p616-be93c80863a88d31005a741892e54ef67c6c98a1691a7561e46e28db89dcbcad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alkenes</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Catalysts</topic><topic>Catalytic converters</topic><topic>Chemical activity</topic><topic>Deoxygenation</topic><topic>High temperature</topic><topic>Hydrogenation</topic><topic>Mass transfer</topic><topic>Shift reaction</topic><topic>Spinel</topic><topic>Tradeoffs</topic><topic>Water gas</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaoyue</creatorcontrib><creatorcontrib>Zeng, Ting</creatorcontrib><creatorcontrib>Guo, Xiaohong</creatorcontrib><creatorcontrib>Yan, Zhiqiang</creatorcontrib><creatorcontrib>Ban, Hongyan</creatorcontrib><creatorcontrib>Yao, Ruwei</creatorcontrib><creatorcontrib>Li, Congming</creatorcontrib><creatorcontrib>Gu, Xiang-Kui</creatorcontrib><creatorcontrib>Ding, Mingyue</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaoyue</au><au>Zeng, Ting</au><au>Guo, Xiaohong</au><au>Yan, Zhiqiang</au><au>Ban, Hongyan</au><au>Yao, Ruwei</au><au>Li, Congming</au><au>Gu, Xiang-Kui</au><au>Ding, Mingyue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breaking the activity–selectivity trade-off of CO2 hydrogenation to light olefins</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2024-09-10</date><risdate>2024</risdate><volume>121</volume><issue>37</issue><spage>1</spage><pages>1-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Catalytic hydrogenation of CO2 to value-added fuels and chemicals is of great importance to carbon neutrality but suffers from an activity–selectivity trade-off, leading to limited catalytic performance. Herein, the ZnFeAlO4 + SAPO-34 composite catalyst was designed, which can simultaneously achieve a CO2 conversion of 42%, a CO selectivity of 50%, and a C2–C4= selectivity of 83%, resulting in a C2–C4= yield of almost 18%. This superior catalytic performance was found to be from the presence of unconventional electron-deficient tetrahedral Fe sites and electron-enriched octahedral Zn sites in the ZnFeAlO4 spinel, which were active for the CO2 deoxygenation to CO via the reverse water gas shift reaction, and CO hydrogenation to CH3OH, respectively, leading to a route for CO2 hydrogenation to C2–C4=, where the kinetics of CO2 activation can be improved, the mass transfer of CO hydrogenation can be minimized, and the C2–C4= selectivity can be enhanced via modifying the acid density of SAPO-34. Moreover, the spinel structure of ZnFeAlO4 possessed a strong ability to stabilize the active Fe and Zn sites even at elevated temperatures, resulting in long-term stability of over 450 h for this process, exhibiting great potential for large-scale applications.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><doi>10.1073/pnas.2408297121</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2024-09, Vol.121 (37), p.1 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_3101231906 |
source | Alma/SFX Local Collection |
subjects | Alkenes Carbon dioxide Carbon monoxide Catalysts Catalytic converters Chemical activity Deoxygenation High temperature Hydrogenation Mass transfer Shift reaction Spinel Tradeoffs Water gas Zinc |
title | Breaking the activity–selectivity trade-off of CO2 hydrogenation to light olefins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breaking%20the%20activity%E2%80%93selectivity%20trade-off%20of%20CO2%20hydrogenation%20to%20light%20olefins&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wang,%20Xiaoyue&rft.date=2024-09-10&rft.volume=121&rft.issue=37&rft.spage=1&rft.pages=1-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2408297121&rft_dat=%3Cproquest%3E3106761648%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106761648&rft_id=info:pmid/&rfr_iscdi=true |