Breaking the activity–selectivity trade-off of CO2 hydrogenation to light olefins

Catalytic hydrogenation of CO2 to value-added fuels and chemicals is of great importance to carbon neutrality but suffers from an activity–selectivity trade-off, leading to limited catalytic performance. Herein, the ZnFeAlO4 + SAPO-34 composite catalyst was designed, which can simultaneously achieve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-09, Vol.121 (37), p.1
Hauptverfasser: Wang, Xiaoyue, Zeng, Ting, Guo, Xiaohong, Yan, Zhiqiang, Ban, Hongyan, Yao, Ruwei, Li, Congming, Gu, Xiang-Kui, Ding, Mingyue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 37
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 121
creator Wang, Xiaoyue
Zeng, Ting
Guo, Xiaohong
Yan, Zhiqiang
Ban, Hongyan
Yao, Ruwei
Li, Congming
Gu, Xiang-Kui
Ding, Mingyue
description Catalytic hydrogenation of CO2 to value-added fuels and chemicals is of great importance to carbon neutrality but suffers from an activity–selectivity trade-off, leading to limited catalytic performance. Herein, the ZnFeAlO4 + SAPO-34 composite catalyst was designed, which can simultaneously achieve a CO2 conversion of 42%, a CO selectivity of 50%, and a C2–C4= selectivity of 83%, resulting in a C2–C4= yield of almost 18%. This superior catalytic performance was found to be from the presence of unconventional electron-deficient tetrahedral Fe sites and electron-enriched octahedral Zn sites in the ZnFeAlO4 spinel, which were active for the CO2 deoxygenation to CO via the reverse water gas shift reaction, and CO hydrogenation to CH3OH, respectively, leading to a route for CO2 hydrogenation to C2–C4=, where the kinetics of CO2 activation can be improved, the mass transfer of CO hydrogenation can be minimized, and the C2–C4= selectivity can be enhanced via modifying the acid density of SAPO-34. Moreover, the spinel structure of ZnFeAlO4 possessed a strong ability to stabilize the active Fe and Zn sites even at elevated temperatures, resulting in long-term stability of over 450 h for this process, exhibiting great potential for large-scale applications.
doi_str_mv 10.1073/pnas.2408297121
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_3101231906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3106761648</sourcerecordid><originalsourceid>FETCH-LOGICAL-p616-be93c80863a88d31005a741892e54ef67c6c98a1691a7561e46e28db89dcbcad3</originalsourceid><addsrcrecordid>eNpdjstKAzEYRoMoWKtrtwE3bqb-yWRyWWrxBoUu7L6kmX_a1DGpk4zQne_gG_okjtiVq48PDodDyCWDCQNV3uyCTRMuQHOjGGdHZMTAsEIKA8dkBMBVoQUXp-QspS0AmErDiLzcdWhffVjTvEFqXfYfPu-_P78Stnh4NHe2xiI2DY0Nnc453ezrLq4x2OxjoDnS1q83mcYWGx_SOTlpbJvw4rBjsni4X0yfitn88Xl6Oyt2kslihaZ0GrQsrdZ1yQAqqwTThmMlsJHKSWe0ZdIwqyrJUEjkul5pU7uVs3U5Jtd_2l0X33tMefnmk8O2tQFjn5aDkvGSGZADevUP3ca-C0PcLyXV0CN0-QPxUGDz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106761648</pqid></control><display><type>article</type><title>Breaking the activity–selectivity trade-off of CO2 hydrogenation to light olefins</title><source>Alma/SFX Local Collection</source><creator>Wang, Xiaoyue ; Zeng, Ting ; Guo, Xiaohong ; Yan, Zhiqiang ; Ban, Hongyan ; Yao, Ruwei ; Li, Congming ; Gu, Xiang-Kui ; Ding, Mingyue</creator><creatorcontrib>Wang, Xiaoyue ; Zeng, Ting ; Guo, Xiaohong ; Yan, Zhiqiang ; Ban, Hongyan ; Yao, Ruwei ; Li, Congming ; Gu, Xiang-Kui ; Ding, Mingyue</creatorcontrib><description>Catalytic hydrogenation of CO2 to value-added fuels and chemicals is of great importance to carbon neutrality but suffers from an activity–selectivity trade-off, leading to limited catalytic performance. Herein, the ZnFeAlO4 + SAPO-34 composite catalyst was designed, which can simultaneously achieve a CO2 conversion of 42%, a CO selectivity of 50%, and a C2–C4= selectivity of 83%, resulting in a C2–C4= yield of almost 18%. This superior catalytic performance was found to be from the presence of unconventional electron-deficient tetrahedral Fe sites and electron-enriched octahedral Zn sites in the ZnFeAlO4 spinel, which were active for the CO2 deoxygenation to CO via the reverse water gas shift reaction, and CO hydrogenation to CH3OH, respectively, leading to a route for CO2 hydrogenation to C2–C4=, where the kinetics of CO2 activation can be improved, the mass transfer of CO hydrogenation can be minimized, and the C2–C4= selectivity can be enhanced via modifying the acid density of SAPO-34. Moreover, the spinel structure of ZnFeAlO4 possessed a strong ability to stabilize the active Fe and Zn sites even at elevated temperatures, resulting in long-term stability of over 450 h for this process, exhibiting great potential for large-scale applications.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2408297121</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Alkenes ; Carbon dioxide ; Carbon monoxide ; Catalysts ; Catalytic converters ; Chemical activity ; Deoxygenation ; High temperature ; Hydrogenation ; Mass transfer ; Shift reaction ; Spinel ; Tradeoffs ; Water gas ; Zinc</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-09, Vol.121 (37), p.1</ispartof><rights>Copyright National Academy of Sciences Sep 10, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Wang, Xiaoyue</creatorcontrib><creatorcontrib>Zeng, Ting</creatorcontrib><creatorcontrib>Guo, Xiaohong</creatorcontrib><creatorcontrib>Yan, Zhiqiang</creatorcontrib><creatorcontrib>Ban, Hongyan</creatorcontrib><creatorcontrib>Yao, Ruwei</creatorcontrib><creatorcontrib>Li, Congming</creatorcontrib><creatorcontrib>Gu, Xiang-Kui</creatorcontrib><creatorcontrib>Ding, Mingyue</creatorcontrib><title>Breaking the activity–selectivity trade-off of CO2 hydrogenation to light olefins</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Catalytic hydrogenation of CO2 to value-added fuels and chemicals is of great importance to carbon neutrality but suffers from an activity–selectivity trade-off, leading to limited catalytic performance. Herein, the ZnFeAlO4 + SAPO-34 composite catalyst was designed, which can simultaneously achieve a CO2 conversion of 42%, a CO selectivity of 50%, and a C2–C4= selectivity of 83%, resulting in a C2–C4= yield of almost 18%. This superior catalytic performance was found to be from the presence of unconventional electron-deficient tetrahedral Fe sites and electron-enriched octahedral Zn sites in the ZnFeAlO4 spinel, which were active for the CO2 deoxygenation to CO via the reverse water gas shift reaction, and CO hydrogenation to CH3OH, respectively, leading to a route for CO2 hydrogenation to C2–C4=, where the kinetics of CO2 activation can be improved, the mass transfer of CO hydrogenation can be minimized, and the C2–C4= selectivity can be enhanced via modifying the acid density of SAPO-34. Moreover, the spinel structure of ZnFeAlO4 possessed a strong ability to stabilize the active Fe and Zn sites even at elevated temperatures, resulting in long-term stability of over 450 h for this process, exhibiting great potential for large-scale applications.</description><subject>Alkenes</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Catalysts</subject><subject>Catalytic converters</subject><subject>Chemical activity</subject><subject>Deoxygenation</subject><subject>High temperature</subject><subject>Hydrogenation</subject><subject>Mass transfer</subject><subject>Shift reaction</subject><subject>Spinel</subject><subject>Tradeoffs</subject><subject>Water gas</subject><subject>Zinc</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdjstKAzEYRoMoWKtrtwE3bqb-yWRyWWrxBoUu7L6kmX_a1DGpk4zQne_gG_okjtiVq48PDodDyCWDCQNV3uyCTRMuQHOjGGdHZMTAsEIKA8dkBMBVoQUXp-QspS0AmErDiLzcdWhffVjTvEFqXfYfPu-_P78Stnh4NHe2xiI2DY0Nnc453ezrLq4x2OxjoDnS1q83mcYWGx_SOTlpbJvw4rBjsni4X0yfitn88Xl6Oyt2kslihaZ0GrQsrdZ1yQAqqwTThmMlsJHKSWe0ZdIwqyrJUEjkul5pU7uVs3U5Jtd_2l0X33tMefnmk8O2tQFjn5aDkvGSGZADevUP3ca-C0PcLyXV0CN0-QPxUGDz</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>Wang, Xiaoyue</creator><creator>Zeng, Ting</creator><creator>Guo, Xiaohong</creator><creator>Yan, Zhiqiang</creator><creator>Ban, Hongyan</creator><creator>Yao, Ruwei</creator><creator>Li, Congming</creator><creator>Gu, Xiang-Kui</creator><creator>Ding, Mingyue</creator><general>National Academy of Sciences</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20240910</creationdate><title>Breaking the activity–selectivity trade-off of CO2 hydrogenation to light olefins</title><author>Wang, Xiaoyue ; Zeng, Ting ; Guo, Xiaohong ; Yan, Zhiqiang ; Ban, Hongyan ; Yao, Ruwei ; Li, Congming ; Gu, Xiang-Kui ; Ding, Mingyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p616-be93c80863a88d31005a741892e54ef67c6c98a1691a7561e46e28db89dcbcad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alkenes</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Catalysts</topic><topic>Catalytic converters</topic><topic>Chemical activity</topic><topic>Deoxygenation</topic><topic>High temperature</topic><topic>Hydrogenation</topic><topic>Mass transfer</topic><topic>Shift reaction</topic><topic>Spinel</topic><topic>Tradeoffs</topic><topic>Water gas</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaoyue</creatorcontrib><creatorcontrib>Zeng, Ting</creatorcontrib><creatorcontrib>Guo, Xiaohong</creatorcontrib><creatorcontrib>Yan, Zhiqiang</creatorcontrib><creatorcontrib>Ban, Hongyan</creatorcontrib><creatorcontrib>Yao, Ruwei</creatorcontrib><creatorcontrib>Li, Congming</creatorcontrib><creatorcontrib>Gu, Xiang-Kui</creatorcontrib><creatorcontrib>Ding, Mingyue</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaoyue</au><au>Zeng, Ting</au><au>Guo, Xiaohong</au><au>Yan, Zhiqiang</au><au>Ban, Hongyan</au><au>Yao, Ruwei</au><au>Li, Congming</au><au>Gu, Xiang-Kui</au><au>Ding, Mingyue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breaking the activity–selectivity trade-off of CO2 hydrogenation to light olefins</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2024-09-10</date><risdate>2024</risdate><volume>121</volume><issue>37</issue><spage>1</spage><pages>1-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Catalytic hydrogenation of CO2 to value-added fuels and chemicals is of great importance to carbon neutrality but suffers from an activity–selectivity trade-off, leading to limited catalytic performance. Herein, the ZnFeAlO4 + SAPO-34 composite catalyst was designed, which can simultaneously achieve a CO2 conversion of 42%, a CO selectivity of 50%, and a C2–C4= selectivity of 83%, resulting in a C2–C4= yield of almost 18%. This superior catalytic performance was found to be from the presence of unconventional electron-deficient tetrahedral Fe sites and electron-enriched octahedral Zn sites in the ZnFeAlO4 spinel, which were active for the CO2 deoxygenation to CO via the reverse water gas shift reaction, and CO hydrogenation to CH3OH, respectively, leading to a route for CO2 hydrogenation to C2–C4=, where the kinetics of CO2 activation can be improved, the mass transfer of CO hydrogenation can be minimized, and the C2–C4= selectivity can be enhanced via modifying the acid density of SAPO-34. Moreover, the spinel structure of ZnFeAlO4 possessed a strong ability to stabilize the active Fe and Zn sites even at elevated temperatures, resulting in long-term stability of over 450 h for this process, exhibiting great potential for large-scale applications.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><doi>10.1073/pnas.2408297121</doi></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2024-09, Vol.121 (37), p.1
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_proquest_miscellaneous_3101231906
source Alma/SFX Local Collection
subjects Alkenes
Carbon dioxide
Carbon monoxide
Catalysts
Catalytic converters
Chemical activity
Deoxygenation
High temperature
Hydrogenation
Mass transfer
Shift reaction
Spinel
Tradeoffs
Water gas
Zinc
title Breaking the activity–selectivity trade-off of CO2 hydrogenation to light olefins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breaking%20the%20activity%E2%80%93selectivity%20trade-off%20of%20CO2%20hydrogenation%20to%20light%20olefins&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wang,%20Xiaoyue&rft.date=2024-09-10&rft.volume=121&rft.issue=37&rft.spage=1&rft.pages=1-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2408297121&rft_dat=%3Cproquest%3E3106761648%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106761648&rft_id=info:pmid/&rfr_iscdi=true