Deep learning permits imaging of multiple structures with the same fluorophores

Fluorescence microscopy, which employs fluorescent tags to label and observe cellular structures and their dynamics, is a powerful tool for life sciences. However, due to the spectral overlap between different dyes, a limited number of structures can be separately labeled and imaged for live-cell ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2024-10, Vol.123 (20), p.3540-3549
Hauptverfasser: Jin, Luhong, Liu, Jingfang, Zhang, Heng, Zhu, Yunqi, Yang, Haixu, Wang, Jianhang, Zhang, Luhao, Kuang, Cuifang, Ji, Baohua, Zhang, Ju, Liu, Xu, Xu, Yingke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3549
container_issue 20
container_start_page 3540
container_title Biophysical journal
container_volume 123
creator Jin, Luhong
Liu, Jingfang
Zhang, Heng
Zhu, Yunqi
Yang, Haixu
Wang, Jianhang
Zhang, Luhao
Kuang, Cuifang
Ji, Baohua
Zhang, Ju
Liu, Xu
Xu, Yingke
description Fluorescence microscopy, which employs fluorescent tags to label and observe cellular structures and their dynamics, is a powerful tool for life sciences. However, due to the spectral overlap between different dyes, a limited number of structures can be separately labeled and imaged for live-cell applications. In addition, the conventional sequential channel imaging procedure is quite time consuming, as it needs to switch either different lasers or filters. Here, we propose a novel double-structure network (DBSN) that consists of multiple connected models, which can extract six distinct subcellular structures from three raw images with only two separate fluorescent labels. DBSN combines the intensity-balance model to compensate for uneven fluorescent labels for different structures and the structure-separation model to extract multiple different structures with the same fluorescent labels. Therefore, DBSN breaks the bottleneck of the existing technologies and holds immense potential applications in the field of cell biology.
doi_str_mv 10.1016/j.bpj.2024.09.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3100917798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349524005939</els_id><sourcerecordid>3100917798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c235t-9aa8ceb42cee10f930a8eb3b6b86f90744e7f1dd29b5b28d22ca11733fe0577f3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7vrxA7xIj15aJ0m_gifxGwQveg5pOnFT2m1NUsV_b5ZdPXoaZuaZF-Yh5IxCRoGWl13WTF3GgOUZiAyA7pElLXKWAtTlPlkCQJnyXBQLcuR9FwFWAD0kCy4Y53nOluTlFnFKelRubdfvyYRusMEndlDvm340yTD3wU49Jj64WYfZoU--bFglYRVnasDE9PPoxmk1xtUJOTCq93i6q8fk7f7u9eYxfX55eLq5fk4140VIhVK1xiZnGpGCERxUjQ1vyqYujYAqz7EytG2ZaIqG1S1jWlFacW4Qiqoy_JhcbHMnN37M6IMcrNfY92qN4-wlpwCCVpWoI0q3qHaj9w6NnFz8z31LCnLjUXYyepQbjxKEjJrizfkufm4GbP8ufsVF4GoLYHzy06KTXltca2ytQx1kO9p_4n8AY_OEMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100917798</pqid></control><display><type>article</type><title>Deep learning permits imaging of multiple structures with the same fluorophores</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Jin, Luhong ; Liu, Jingfang ; Zhang, Heng ; Zhu, Yunqi ; Yang, Haixu ; Wang, Jianhang ; Zhang, Luhao ; Kuang, Cuifang ; Ji, Baohua ; Zhang, Ju ; Liu, Xu ; Xu, Yingke</creator><creatorcontrib>Jin, Luhong ; Liu, Jingfang ; Zhang, Heng ; Zhu, Yunqi ; Yang, Haixu ; Wang, Jianhang ; Zhang, Luhao ; Kuang, Cuifang ; Ji, Baohua ; Zhang, Ju ; Liu, Xu ; Xu, Yingke</creatorcontrib><description>Fluorescence microscopy, which employs fluorescent tags to label and observe cellular structures and their dynamics, is a powerful tool for life sciences. However, due to the spectral overlap between different dyes, a limited number of structures can be separately labeled and imaged for live-cell applications. In addition, the conventional sequential channel imaging procedure is quite time consuming, as it needs to switch either different lasers or filters. Here, we propose a novel double-structure network (DBSN) that consists of multiple connected models, which can extract six distinct subcellular structures from three raw images with only two separate fluorescent labels. DBSN combines the intensity-balance model to compensate for uneven fluorescent labels for different structures and the structure-separation model to extract multiple different structures with the same fluorescent labels. Therefore, DBSN breaks the bottleneck of the existing technologies and holds immense potential applications in the field of cell biology.</description><identifier>ISSN: 0006-3495</identifier><identifier>ISSN: 1542-0086</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2024.09.001</identifier><identifier>PMID: 39233442</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Deep Learning ; Fluorescent Dyes - chemistry ; Humans ; Image Processing, Computer-Assisted - methods ; Microscopy, Fluorescence - methods</subject><ispartof>Biophysical journal, 2024-10, Vol.123 (20), p.3540-3549</ispartof><rights>2024 Biophysical Society</rights><rights>Copyright © 2024 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c235t-9aa8ceb42cee10f930a8eb3b6b86f90744e7f1dd29b5b28d22ca11733fe0577f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349524005939$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39233442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Luhong</creatorcontrib><creatorcontrib>Liu, Jingfang</creatorcontrib><creatorcontrib>Zhang, Heng</creatorcontrib><creatorcontrib>Zhu, Yunqi</creatorcontrib><creatorcontrib>Yang, Haixu</creatorcontrib><creatorcontrib>Wang, Jianhang</creatorcontrib><creatorcontrib>Zhang, Luhao</creatorcontrib><creatorcontrib>Kuang, Cuifang</creatorcontrib><creatorcontrib>Ji, Baohua</creatorcontrib><creatorcontrib>Zhang, Ju</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Xu, Yingke</creatorcontrib><title>Deep learning permits imaging of multiple structures with the same fluorophores</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Fluorescence microscopy, which employs fluorescent tags to label and observe cellular structures and their dynamics, is a powerful tool for life sciences. However, due to the spectral overlap between different dyes, a limited number of structures can be separately labeled and imaged for live-cell applications. In addition, the conventional sequential channel imaging procedure is quite time consuming, as it needs to switch either different lasers or filters. Here, we propose a novel double-structure network (DBSN) that consists of multiple connected models, which can extract six distinct subcellular structures from three raw images with only two separate fluorescent labels. DBSN combines the intensity-balance model to compensate for uneven fluorescent labels for different structures and the structure-separation model to extract multiple different structures with the same fluorescent labels. Therefore, DBSN breaks the bottleneck of the existing technologies and holds immense potential applications in the field of cell biology.</description><subject>Deep Learning</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Microscopy, Fluorescence - methods</subject><issn>0006-3495</issn><issn>1542-0086</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMo7vrxA7xIj15aJ0m_gifxGwQveg5pOnFT2m1NUsV_b5ZdPXoaZuaZF-Yh5IxCRoGWl13WTF3GgOUZiAyA7pElLXKWAtTlPlkCQJnyXBQLcuR9FwFWAD0kCy4Y53nOluTlFnFKelRubdfvyYRusMEndlDvm340yTD3wU49Jj64WYfZoU--bFglYRVnasDE9PPoxmk1xtUJOTCq93i6q8fk7f7u9eYxfX55eLq5fk4140VIhVK1xiZnGpGCERxUjQ1vyqYujYAqz7EytG2ZaIqG1S1jWlFacW4Qiqoy_JhcbHMnN37M6IMcrNfY92qN4-wlpwCCVpWoI0q3qHaj9w6NnFz8z31LCnLjUXYyepQbjxKEjJrizfkufm4GbP8ufsVF4GoLYHzy06KTXltca2ytQx1kO9p_4n8AY_OEMw</recordid><startdate>20241015</startdate><enddate>20241015</enddate><creator>Jin, Luhong</creator><creator>Liu, Jingfang</creator><creator>Zhang, Heng</creator><creator>Zhu, Yunqi</creator><creator>Yang, Haixu</creator><creator>Wang, Jianhang</creator><creator>Zhang, Luhao</creator><creator>Kuang, Cuifang</creator><creator>Ji, Baohua</creator><creator>Zhang, Ju</creator><creator>Liu, Xu</creator><creator>Xu, Yingke</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20241015</creationdate><title>Deep learning permits imaging of multiple structures with the same fluorophores</title><author>Jin, Luhong ; Liu, Jingfang ; Zhang, Heng ; Zhu, Yunqi ; Yang, Haixu ; Wang, Jianhang ; Zhang, Luhao ; Kuang, Cuifang ; Ji, Baohua ; Zhang, Ju ; Liu, Xu ; Xu, Yingke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c235t-9aa8ceb42cee10f930a8eb3b6b86f90744e7f1dd29b5b28d22ca11733fe0577f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep Learning</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Microscopy, Fluorescence - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Luhong</creatorcontrib><creatorcontrib>Liu, Jingfang</creatorcontrib><creatorcontrib>Zhang, Heng</creatorcontrib><creatorcontrib>Zhu, Yunqi</creatorcontrib><creatorcontrib>Yang, Haixu</creatorcontrib><creatorcontrib>Wang, Jianhang</creatorcontrib><creatorcontrib>Zhang, Luhao</creatorcontrib><creatorcontrib>Kuang, Cuifang</creatorcontrib><creatorcontrib>Ji, Baohua</creatorcontrib><creatorcontrib>Zhang, Ju</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Xu, Yingke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Luhong</au><au>Liu, Jingfang</au><au>Zhang, Heng</au><au>Zhu, Yunqi</au><au>Yang, Haixu</au><au>Wang, Jianhang</au><au>Zhang, Luhao</au><au>Kuang, Cuifang</au><au>Ji, Baohua</au><au>Zhang, Ju</au><au>Liu, Xu</au><au>Xu, Yingke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning permits imaging of multiple structures with the same fluorophores</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2024-10-15</date><risdate>2024</risdate><volume>123</volume><issue>20</issue><spage>3540</spage><epage>3549</epage><pages>3540-3549</pages><issn>0006-3495</issn><issn>1542-0086</issn><eissn>1542-0086</eissn><abstract>Fluorescence microscopy, which employs fluorescent tags to label and observe cellular structures and their dynamics, is a powerful tool for life sciences. However, due to the spectral overlap between different dyes, a limited number of structures can be separately labeled and imaged for live-cell applications. In addition, the conventional sequential channel imaging procedure is quite time consuming, as it needs to switch either different lasers or filters. Here, we propose a novel double-structure network (DBSN) that consists of multiple connected models, which can extract six distinct subcellular structures from three raw images with only two separate fluorescent labels. DBSN combines the intensity-balance model to compensate for uneven fluorescent labels for different structures and the structure-separation model to extract multiple different structures with the same fluorescent labels. Therefore, DBSN breaks the bottleneck of the existing technologies and holds immense potential applications in the field of cell biology.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39233442</pmid><doi>10.1016/j.bpj.2024.09.001</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2024-10, Vol.123 (20), p.3540-3549
issn 0006-3495
1542-0086
1542-0086
language eng
recordid cdi_proquest_miscellaneous_3100917798
source MEDLINE; Elsevier ScienceDirect Journals
subjects Deep Learning
Fluorescent Dyes - chemistry
Humans
Image Processing, Computer-Assisted - methods
Microscopy, Fluorescence - methods
title Deep learning permits imaging of multiple structures with the same fluorophores
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20permits%20imaging%20of%20multiple%20structures%20with%20the%20same%20fluorophores&rft.jtitle=Biophysical%20journal&rft.au=Jin,%20Luhong&rft.date=2024-10-15&rft.volume=123&rft.issue=20&rft.spage=3540&rft.epage=3549&rft.pages=3540-3549&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2024.09.001&rft_dat=%3Cproquest_cross%3E3100917798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100917798&rft_id=info:pmid/39233442&rft_els_id=S0006349524005939&rfr_iscdi=true