Deep learning permits imaging of multiple structures with the same fluorophores
Fluorescence microscopy, which employs fluorescent tags to label and observe cellular structures and their dynamics, is a powerful tool for life sciences. However, due to the spectral overlap between different dyes, a limited number of structures can be separately labeled and imaged for live-cell ap...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2024-10, Vol.123 (20), p.3540-3549 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3549 |
---|---|
container_issue | 20 |
container_start_page | 3540 |
container_title | Biophysical journal |
container_volume | 123 |
creator | Jin, Luhong Liu, Jingfang Zhang, Heng Zhu, Yunqi Yang, Haixu Wang, Jianhang Zhang, Luhao Kuang, Cuifang Ji, Baohua Zhang, Ju Liu, Xu Xu, Yingke |
description | Fluorescence microscopy, which employs fluorescent tags to label and observe cellular structures and their dynamics, is a powerful tool for life sciences. However, due to the spectral overlap between different dyes, a limited number of structures can be separately labeled and imaged for live-cell applications. In addition, the conventional sequential channel imaging procedure is quite time consuming, as it needs to switch either different lasers or filters. Here, we propose a novel double-structure network (DBSN) that consists of multiple connected models, which can extract six distinct subcellular structures from three raw images with only two separate fluorescent labels. DBSN combines the intensity-balance model to compensate for uneven fluorescent labels for different structures and the structure-separation model to extract multiple different structures with the same fluorescent labels. Therefore, DBSN breaks the bottleneck of the existing technologies and holds immense potential applications in the field of cell biology. |
doi_str_mv | 10.1016/j.bpj.2024.09.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3100917798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349524005939</els_id><sourcerecordid>3100917798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c235t-9aa8ceb42cee10f930a8eb3b6b86f90744e7f1dd29b5b28d22ca11733fe0577f3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7vrxA7xIj15aJ0m_gifxGwQveg5pOnFT2m1NUsV_b5ZdPXoaZuaZF-Yh5IxCRoGWl13WTF3GgOUZiAyA7pElLXKWAtTlPlkCQJnyXBQLcuR9FwFWAD0kCy4Y53nOluTlFnFKelRubdfvyYRusMEndlDvm340yTD3wU49Jj64WYfZoU--bFglYRVnasDE9PPoxmk1xtUJOTCq93i6q8fk7f7u9eYxfX55eLq5fk4140VIhVK1xiZnGpGCERxUjQ1vyqYujYAqz7EytG2ZaIqG1S1jWlFacW4Qiqoy_JhcbHMnN37M6IMcrNfY92qN4-wlpwCCVpWoI0q3qHaj9w6NnFz8z31LCnLjUXYyepQbjxKEjJrizfkufm4GbP8ufsVF4GoLYHzy06KTXltca2ytQx1kO9p_4n8AY_OEMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100917798</pqid></control><display><type>article</type><title>Deep learning permits imaging of multiple structures with the same fluorophores</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Jin, Luhong ; Liu, Jingfang ; Zhang, Heng ; Zhu, Yunqi ; Yang, Haixu ; Wang, Jianhang ; Zhang, Luhao ; Kuang, Cuifang ; Ji, Baohua ; Zhang, Ju ; Liu, Xu ; Xu, Yingke</creator><creatorcontrib>Jin, Luhong ; Liu, Jingfang ; Zhang, Heng ; Zhu, Yunqi ; Yang, Haixu ; Wang, Jianhang ; Zhang, Luhao ; Kuang, Cuifang ; Ji, Baohua ; Zhang, Ju ; Liu, Xu ; Xu, Yingke</creatorcontrib><description>Fluorescence microscopy, which employs fluorescent tags to label and observe cellular structures and their dynamics, is a powerful tool for life sciences. However, due to the spectral overlap between different dyes, a limited number of structures can be separately labeled and imaged for live-cell applications. In addition, the conventional sequential channel imaging procedure is quite time consuming, as it needs to switch either different lasers or filters. Here, we propose a novel double-structure network (DBSN) that consists of multiple connected models, which can extract six distinct subcellular structures from three raw images with only two separate fluorescent labels. DBSN combines the intensity-balance model to compensate for uneven fluorescent labels for different structures and the structure-separation model to extract multiple different structures with the same fluorescent labels. Therefore, DBSN breaks the bottleneck of the existing technologies and holds immense potential applications in the field of cell biology.</description><identifier>ISSN: 0006-3495</identifier><identifier>ISSN: 1542-0086</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2024.09.001</identifier><identifier>PMID: 39233442</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Deep Learning ; Fluorescent Dyes - chemistry ; Humans ; Image Processing, Computer-Assisted - methods ; Microscopy, Fluorescence - methods</subject><ispartof>Biophysical journal, 2024-10, Vol.123 (20), p.3540-3549</ispartof><rights>2024 Biophysical Society</rights><rights>Copyright © 2024 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c235t-9aa8ceb42cee10f930a8eb3b6b86f90744e7f1dd29b5b28d22ca11733fe0577f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349524005939$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39233442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Luhong</creatorcontrib><creatorcontrib>Liu, Jingfang</creatorcontrib><creatorcontrib>Zhang, Heng</creatorcontrib><creatorcontrib>Zhu, Yunqi</creatorcontrib><creatorcontrib>Yang, Haixu</creatorcontrib><creatorcontrib>Wang, Jianhang</creatorcontrib><creatorcontrib>Zhang, Luhao</creatorcontrib><creatorcontrib>Kuang, Cuifang</creatorcontrib><creatorcontrib>Ji, Baohua</creatorcontrib><creatorcontrib>Zhang, Ju</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Xu, Yingke</creatorcontrib><title>Deep learning permits imaging of multiple structures with the same fluorophores</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Fluorescence microscopy, which employs fluorescent tags to label and observe cellular structures and their dynamics, is a powerful tool for life sciences. However, due to the spectral overlap between different dyes, a limited number of structures can be separately labeled and imaged for live-cell applications. In addition, the conventional sequential channel imaging procedure is quite time consuming, as it needs to switch either different lasers or filters. Here, we propose a novel double-structure network (DBSN) that consists of multiple connected models, which can extract six distinct subcellular structures from three raw images with only two separate fluorescent labels. DBSN combines the intensity-balance model to compensate for uneven fluorescent labels for different structures and the structure-separation model to extract multiple different structures with the same fluorescent labels. Therefore, DBSN breaks the bottleneck of the existing technologies and holds immense potential applications in the field of cell biology.</description><subject>Deep Learning</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Microscopy, Fluorescence - methods</subject><issn>0006-3495</issn><issn>1542-0086</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMo7vrxA7xIj15aJ0m_gifxGwQveg5pOnFT2m1NUsV_b5ZdPXoaZuaZF-Yh5IxCRoGWl13WTF3GgOUZiAyA7pElLXKWAtTlPlkCQJnyXBQLcuR9FwFWAD0kCy4Y53nOluTlFnFKelRubdfvyYRusMEndlDvm340yTD3wU49Jj64WYfZoU--bFglYRVnasDE9PPoxmk1xtUJOTCq93i6q8fk7f7u9eYxfX55eLq5fk4140VIhVK1xiZnGpGCERxUjQ1vyqYujYAqz7EytG2ZaIqG1S1jWlFacW4Qiqoy_JhcbHMnN37M6IMcrNfY92qN4-wlpwCCVpWoI0q3qHaj9w6NnFz8z31LCnLjUXYyepQbjxKEjJrizfkufm4GbP8ufsVF4GoLYHzy06KTXltca2ytQx1kO9p_4n8AY_OEMw</recordid><startdate>20241015</startdate><enddate>20241015</enddate><creator>Jin, Luhong</creator><creator>Liu, Jingfang</creator><creator>Zhang, Heng</creator><creator>Zhu, Yunqi</creator><creator>Yang, Haixu</creator><creator>Wang, Jianhang</creator><creator>Zhang, Luhao</creator><creator>Kuang, Cuifang</creator><creator>Ji, Baohua</creator><creator>Zhang, Ju</creator><creator>Liu, Xu</creator><creator>Xu, Yingke</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20241015</creationdate><title>Deep learning permits imaging of multiple structures with the same fluorophores</title><author>Jin, Luhong ; Liu, Jingfang ; Zhang, Heng ; Zhu, Yunqi ; Yang, Haixu ; Wang, Jianhang ; Zhang, Luhao ; Kuang, Cuifang ; Ji, Baohua ; Zhang, Ju ; Liu, Xu ; Xu, Yingke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c235t-9aa8ceb42cee10f930a8eb3b6b86f90744e7f1dd29b5b28d22ca11733fe0577f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep Learning</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Microscopy, Fluorescence - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Luhong</creatorcontrib><creatorcontrib>Liu, Jingfang</creatorcontrib><creatorcontrib>Zhang, Heng</creatorcontrib><creatorcontrib>Zhu, Yunqi</creatorcontrib><creatorcontrib>Yang, Haixu</creatorcontrib><creatorcontrib>Wang, Jianhang</creatorcontrib><creatorcontrib>Zhang, Luhao</creatorcontrib><creatorcontrib>Kuang, Cuifang</creatorcontrib><creatorcontrib>Ji, Baohua</creatorcontrib><creatorcontrib>Zhang, Ju</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Xu, Yingke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Luhong</au><au>Liu, Jingfang</au><au>Zhang, Heng</au><au>Zhu, Yunqi</au><au>Yang, Haixu</au><au>Wang, Jianhang</au><au>Zhang, Luhao</au><au>Kuang, Cuifang</au><au>Ji, Baohua</au><au>Zhang, Ju</au><au>Liu, Xu</au><au>Xu, Yingke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning permits imaging of multiple structures with the same fluorophores</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2024-10-15</date><risdate>2024</risdate><volume>123</volume><issue>20</issue><spage>3540</spage><epage>3549</epage><pages>3540-3549</pages><issn>0006-3495</issn><issn>1542-0086</issn><eissn>1542-0086</eissn><abstract>Fluorescence microscopy, which employs fluorescent tags to label and observe cellular structures and their dynamics, is a powerful tool for life sciences. However, due to the spectral overlap between different dyes, a limited number of structures can be separately labeled and imaged for live-cell applications. In addition, the conventional sequential channel imaging procedure is quite time consuming, as it needs to switch either different lasers or filters. Here, we propose a novel double-structure network (DBSN) that consists of multiple connected models, which can extract six distinct subcellular structures from three raw images with only two separate fluorescent labels. DBSN combines the intensity-balance model to compensate for uneven fluorescent labels for different structures and the structure-separation model to extract multiple different structures with the same fluorescent labels. Therefore, DBSN breaks the bottleneck of the existing technologies and holds immense potential applications in the field of cell biology.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39233442</pmid><doi>10.1016/j.bpj.2024.09.001</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2024-10, Vol.123 (20), p.3540-3549 |
issn | 0006-3495 1542-0086 1542-0086 |
language | eng |
recordid | cdi_proquest_miscellaneous_3100917798 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Deep Learning Fluorescent Dyes - chemistry Humans Image Processing, Computer-Assisted - methods Microscopy, Fluorescence - methods |
title | Deep learning permits imaging of multiple structures with the same fluorophores |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20permits%20imaging%20of%20multiple%20structures%20with%20the%20same%20fluorophores&rft.jtitle=Biophysical%20journal&rft.au=Jin,%20Luhong&rft.date=2024-10-15&rft.volume=123&rft.issue=20&rft.spage=3540&rft.epage=3549&rft.pages=3540-3549&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2024.09.001&rft_dat=%3Cproquest_cross%3E3100917798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100917798&rft_id=info:pmid/39233442&rft_els_id=S0006349524005939&rfr_iscdi=true |