Insights into the Role of Side-Chain Team Work in nDsbDOx/Red Proteins: Mechanism of Substrate Binding

N-terminal disulfide bond oxidoreductase (nDsbDOx/Red) proteins display divergent substrate binding mechanisms depending on the conformational changes to the Phe70 cap, which is also dependent on the disulfide redox state. In nDsbDOx, the cap dynamics is complex (shows both open/closed Phe70 cap con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2024-10, Vol.128 (43), p.10541-10552
Hauptverfasser: Nair, Aparna G., Anjukandi, Padmesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10552
container_issue 43
container_start_page 10541
container_title The journal of physical chemistry. B
container_volume 128
creator Nair, Aparna G.
Anjukandi, Padmesh
description N-terminal disulfide bond oxidoreductase (nDsbDOx/Red) proteins display divergent substrate binding mechanisms depending on the conformational changes to the Phe70 cap, which is also dependent on the disulfide redox state. In nDsbDOx, the cap dynamics is complex (shows both open/closed Phe70 cap conformations), resulting in an active site that is highly flexible. So the system’s active site is conformationally selective (the active site adapts before substrate binding) toward its substrate. In nDsbDRed, the cap is generally closed, resulting in induced fit-type binding (adapts after substrate approach). Recent studies predict Tyr40 and Tyr42 residues to act as internal nucleophiles (Tyr40/42O–) for disulfide association/dissociation in nDsbDOx/Red, supplementing the electron transfer channel. From this perspective, we investigate the cap dynamics and the subsequent substrate binding modes in these proteins. Our molecular dynamics simulations show that the cap opening eliminates Tyr42O– electrostatic interactions irrespective of the disulfide redox state. The active site becomes highly flexible, and the conformational selection mechanism governs. However, Tyr40O– formation does not alter the chemical environment; the cap remains mostly closed and plausibly follows the induced fit mechanism. Thus, it is apparent that mostly Tyr42O– facilitates the internal nucleophile-mediated self-preparation of nDsbDOx/Red proteins for binding.
doi_str_mv 10.1021/acs.jpcb.4c02155
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3100914437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154159000</sourcerecordid><originalsourceid>FETCH-LOGICAL-a188t-aa3b04ee2b8c0e0e853eaf7bbf1808ceab45042643e3d47b344c1f02dbe44ef73</originalsourceid><addsrcrecordid>eNqNkE9PwzAMxSsEEmNw55gjB7o5TdJ23GDjz6ShoTHEsUpSd8voktGkEh-fbuwDcLDsZz0_yb8ouqYwoJDQodR-sNlpNeC6k0KcRD0qEoi7yk6Pc0ohPY8uvN8AJCLJ015UTa03q3XwxNjgSFgjWbgaiavIuykxHq-lsWSJcks-XfPVuYideDWZ_wwXWJK3xgU01t-RV9RraY3fHk5b5UMjA5IHY0tjV5fRWSVrj1fH3o8-nh6X45d4Nn-eju9nsaR5HmIpmQKOmKhcAwLmgqGsMqUqmkOuUSougCcpZ8hKninGuaYVJKVCzrHKWD-6-cvdNe67RR-KrfEa61padK0vGBWcihEA_MMKMKKcs33q7Z-1g1xsXNvY7oeCQrEnXxyWHfniSJ79AsCVd9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100914437</pqid></control><display><type>article</type><title>Insights into the Role of Side-Chain Team Work in nDsbDOx/Red Proteins: Mechanism of Substrate Binding</title><source>ACS Publications</source><creator>Nair, Aparna G. ; Anjukandi, Padmesh</creator><creatorcontrib>Nair, Aparna G. ; Anjukandi, Padmesh</creatorcontrib><description>N-terminal disulfide bond oxidoreductase (nDsbDOx/Red) proteins display divergent substrate binding mechanisms depending on the conformational changes to the Phe70 cap, which is also dependent on the disulfide redox state. In nDsbDOx, the cap dynamics is complex (shows both open/closed Phe70 cap conformations), resulting in an active site that is highly flexible. So the system’s active site is conformationally selective (the active site adapts before substrate binding) toward its substrate. In nDsbDRed, the cap is generally closed, resulting in induced fit-type binding (adapts after substrate approach). Recent studies predict Tyr40 and Tyr42 residues to act as internal nucleophiles (Tyr40/42O–) for disulfide association/dissociation in nDsbDOx/Red, supplementing the electron transfer channel. From this perspective, we investigate the cap dynamics and the subsequent substrate binding modes in these proteins. Our molecular dynamics simulations show that the cap opening eliminates Tyr42O– electrostatic interactions irrespective of the disulfide redox state. The active site becomes highly flexible, and the conformational selection mechanism governs. However, Tyr40O– formation does not alter the chemical environment; the cap remains mostly closed and plausibly follows the induced fit mechanism. Thus, it is apparent that mostly Tyr42O– facilitates the internal nucleophile-mediated self-preparation of nDsbDOx/Red proteins for binding.</description><identifier>ISSN: 1520-6106</identifier><identifier>ISSN: 1520-5207</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.4c02155</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>active sites ; B: Biophysical and Biochemical Systems and Processes ; dissociation ; disulfide bonds ; disulfides ; electron transfer ; Lewis bases ; molecular dynamics ; teams</subject><ispartof>The journal of physical chemistry. B, 2024-10, Vol.128 (43), p.10541-10552</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6639-5656 ; 0000-0001-9977-4310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.4c02155$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.4c02155$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Nair, Aparna G.</creatorcontrib><creatorcontrib>Anjukandi, Padmesh</creatorcontrib><title>Insights into the Role of Side-Chain Team Work in nDsbDOx/Red Proteins: Mechanism of Substrate Binding</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>N-terminal disulfide bond oxidoreductase (nDsbDOx/Red) proteins display divergent substrate binding mechanisms depending on the conformational changes to the Phe70 cap, which is also dependent on the disulfide redox state. In nDsbDOx, the cap dynamics is complex (shows both open/closed Phe70 cap conformations), resulting in an active site that is highly flexible. So the system’s active site is conformationally selective (the active site adapts before substrate binding) toward its substrate. In nDsbDRed, the cap is generally closed, resulting in induced fit-type binding (adapts after substrate approach). Recent studies predict Tyr40 and Tyr42 residues to act as internal nucleophiles (Tyr40/42O–) for disulfide association/dissociation in nDsbDOx/Red, supplementing the electron transfer channel. From this perspective, we investigate the cap dynamics and the subsequent substrate binding modes in these proteins. Our molecular dynamics simulations show that the cap opening eliminates Tyr42O– electrostatic interactions irrespective of the disulfide redox state. The active site becomes highly flexible, and the conformational selection mechanism governs. However, Tyr40O– formation does not alter the chemical environment; the cap remains mostly closed and plausibly follows the induced fit mechanism. Thus, it is apparent that mostly Tyr42O– facilitates the internal nucleophile-mediated self-preparation of nDsbDOx/Red proteins for binding.</description><subject>active sites</subject><subject>B: Biophysical and Biochemical Systems and Processes</subject><subject>dissociation</subject><subject>disulfide bonds</subject><subject>disulfides</subject><subject>electron transfer</subject><subject>Lewis bases</subject><subject>molecular dynamics</subject><subject>teams</subject><issn>1520-6106</issn><issn>1520-5207</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkE9PwzAMxSsEEmNw55gjB7o5TdJ23GDjz6ShoTHEsUpSd8voktGkEh-fbuwDcLDsZz0_yb8ouqYwoJDQodR-sNlpNeC6k0KcRD0qEoi7yk6Pc0ohPY8uvN8AJCLJ015UTa03q3XwxNjgSFgjWbgaiavIuykxHq-lsWSJcks-XfPVuYideDWZ_wwXWJK3xgU01t-RV9RraY3fHk5b5UMjA5IHY0tjV5fRWSVrj1fH3o8-nh6X45d4Nn-eju9nsaR5HmIpmQKOmKhcAwLmgqGsMqUqmkOuUSougCcpZ8hKninGuaYVJKVCzrHKWD-6-cvdNe67RR-KrfEa61padK0vGBWcihEA_MMKMKKcs33q7Z-1g1xsXNvY7oeCQrEnXxyWHfniSJ79AsCVd9g</recordid><startdate>20241031</startdate><enddate>20241031</enddate><creator>Nair, Aparna G.</creator><creator>Anjukandi, Padmesh</creator><general>American Chemical Society</general><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-6639-5656</orcidid><orcidid>https://orcid.org/0000-0001-9977-4310</orcidid></search><sort><creationdate>20241031</creationdate><title>Insights into the Role of Side-Chain Team Work in nDsbDOx/Red Proteins: Mechanism of Substrate Binding</title><author>Nair, Aparna G. ; Anjukandi, Padmesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a188t-aa3b04ee2b8c0e0e853eaf7bbf1808ceab45042643e3d47b344c1f02dbe44ef73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>active sites</topic><topic>B: Biophysical and Biochemical Systems and Processes</topic><topic>dissociation</topic><topic>disulfide bonds</topic><topic>disulfides</topic><topic>electron transfer</topic><topic>Lewis bases</topic><topic>molecular dynamics</topic><topic>teams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nair, Aparna G.</creatorcontrib><creatorcontrib>Anjukandi, Padmesh</creatorcontrib><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nair, Aparna G.</au><au>Anjukandi, Padmesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into the Role of Side-Chain Team Work in nDsbDOx/Red Proteins: Mechanism of Substrate Binding</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2024-10-31</date><risdate>2024</risdate><volume>128</volume><issue>43</issue><spage>10541</spage><epage>10552</epage><pages>10541-10552</pages><issn>1520-6106</issn><issn>1520-5207</issn><eissn>1520-5207</eissn><abstract>N-terminal disulfide bond oxidoreductase (nDsbDOx/Red) proteins display divergent substrate binding mechanisms depending on the conformational changes to the Phe70 cap, which is also dependent on the disulfide redox state. In nDsbDOx, the cap dynamics is complex (shows both open/closed Phe70 cap conformations), resulting in an active site that is highly flexible. So the system’s active site is conformationally selective (the active site adapts before substrate binding) toward its substrate. In nDsbDRed, the cap is generally closed, resulting in induced fit-type binding (adapts after substrate approach). Recent studies predict Tyr40 and Tyr42 residues to act as internal nucleophiles (Tyr40/42O–) for disulfide association/dissociation in nDsbDOx/Red, supplementing the electron transfer channel. From this perspective, we investigate the cap dynamics and the subsequent substrate binding modes in these proteins. Our molecular dynamics simulations show that the cap opening eliminates Tyr42O– electrostatic interactions irrespective of the disulfide redox state. The active site becomes highly flexible, and the conformational selection mechanism governs. However, Tyr40O– formation does not alter the chemical environment; the cap remains mostly closed and plausibly follows the induced fit mechanism. Thus, it is apparent that mostly Tyr42O– facilitates the internal nucleophile-mediated self-preparation of nDsbDOx/Red proteins for binding.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcb.4c02155</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6639-5656</orcidid><orcidid>https://orcid.org/0000-0001-9977-4310</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2024-10, Vol.128 (43), p.10541-10552
issn 1520-6106
1520-5207
1520-5207
language eng
recordid cdi_proquest_miscellaneous_3100914437
source ACS Publications
subjects active sites
B: Biophysical and Biochemical Systems and Processes
dissociation
disulfide bonds
disulfides
electron transfer
Lewis bases
molecular dynamics
teams
title Insights into the Role of Side-Chain Team Work in nDsbDOx/Red Proteins: Mechanism of Substrate Binding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A37%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20the%20Role%20of%20Side-Chain%20Team%20Work%20in%20nDsbDOx/Red%20Proteins:%20Mechanism%20of%20Substrate%20Binding&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Nair,%20Aparna%20G.&rft.date=2024-10-31&rft.volume=128&rft.issue=43&rft.spage=10541&rft.epage=10552&rft.pages=10541-10552&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.4c02155&rft_dat=%3Cproquest_acs_j%3E3154159000%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100914437&rft_id=info:pmid/&rfr_iscdi=true