Bias Perpetuates Bias: ChatGPT Learns Gender Inequities in Academic Surgery Promotions

•Implicit bias is well documented in medicine, specifically surgery.•Implicit bias, specifically gender inequities, have been previously seen in letters of recommendation.•Artificial intelligence large language models, such as chatGPT, echo existing gender inequities when asked to write letters of r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of surgical education 2024-11, Vol.81 (11), p.1553-1557
Hauptverfasser: Desai, Pooja, Wang, Hao, Davis, Lindy, Ullmann, Timothy M., DiBrito, Sandra R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1557
container_issue 11
container_start_page 1553
container_title Journal of surgical education
container_volume 81
creator Desai, Pooja
Wang, Hao
Davis, Lindy
Ullmann, Timothy M.
DiBrito, Sandra R.
description •Implicit bias is well documented in medicine, specifically surgery.•Implicit bias, specifically gender inequities, have been previously seen in letters of recommendation.•Artificial intelligence large language models, such as chatGPT, echo existing gender inequities when asked to write letters of recommendation for academic promotion in surgery. Gender inequities persist in academic surgery with implicit bias impacting hiring and promotion at all levels. We hypothesized that creating letters of recommendation for both female and male candidates for academic promotion in surgery using an AI platform, ChatGPT, would elucidate the entrained gender biases already present in the promotion process. Using ChatGPT, we generated 6 letters of recommendation for “a phenomenal surgeon applying for job promotion to associate professor position”, specifying “female” or “male” before surgeon in the prompt. We compared 3 “female” letters to 3 “male” letters for differences in length, language, and tone. The letters written for females averaged 298 words compared to 314 for males. Female letters more frequently referred to “compassion”, “empathy”, and “inclusivity”; whereas male letters referred to “respect”, “reputation”, and “skill”. These findings highlight the gender bias present in promotion letters generated by ChatGPT, reiterating existing literature regarding real letters of recommendation in academic surgery. Our study suggests that surgeons should use AI tools, such as ChatGPT, with caution when writing LORs for academic surgery faculty promotion.
doi_str_mv 10.1016/j.jsurg.2024.07.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3100914155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1931720424003465</els_id><sourcerecordid>3100914155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c239t-9538e47fdd6fcc9e126588b36d8ab209d28d7cc5bc2ad2a7c7e9f411392f66053</originalsourceid><addsrcrecordid>eNp9kFtLwzAUgIMobk5_gSB59KU1l7ZpBB906BwMHDh9DVlyqhlruyWtsH9v66aPPp3D4Tu3D6FLSmJKaHazileh9R8xIyyJiYgJ40doSHORRyJJ2XGXS04jwUgyQGchrAhJE8nkKRpwyTjjhA_R-4PTAc_Bb6BpdQMB94VbPP7UzWS-wDPQvgp4ApUFj6cVbFvXuA5zFb432kLpDH7tzgC_w3Nfl3Xj6iqco5NCrwNcHOIIvT09LsbP0exlMh3fzyLDuGwimfIcElFYmxXGSKAsS_N8yTOb6yUj0rLcCmPSpWHaMi2MAFkklHb3F1lGUj5C1_u5G19vWwiNKl0wsF7rCuo2KE4JkTShaY_yPWp8HYKHQm28K7XfKUpUL1St1I9Q1QtVRKhOaNd1dVjQLkuwfz2_Bjvgbg9A9-aXA6-CcVAZsM6DaZSt3b8LvgFTlYfU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100914155</pqid></control><display><type>article</type><title>Bias Perpetuates Bias: ChatGPT Learns Gender Inequities in Academic Surgery Promotions</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Desai, Pooja ; Wang, Hao ; Davis, Lindy ; Ullmann, Timothy M. ; DiBrito, Sandra R.</creator><creatorcontrib>Desai, Pooja ; Wang, Hao ; Davis, Lindy ; Ullmann, Timothy M. ; DiBrito, Sandra R.</creatorcontrib><description>•Implicit bias is well documented in medicine, specifically surgery.•Implicit bias, specifically gender inequities, have been previously seen in letters of recommendation.•Artificial intelligence large language models, such as chatGPT, echo existing gender inequities when asked to write letters of recommendation for academic promotion in surgery. Gender inequities persist in academic surgery with implicit bias impacting hiring and promotion at all levels. We hypothesized that creating letters of recommendation for both female and male candidates for academic promotion in surgery using an AI platform, ChatGPT, would elucidate the entrained gender biases already present in the promotion process. Using ChatGPT, we generated 6 letters of recommendation for “a phenomenal surgeon applying for job promotion to associate professor position”, specifying “female” or “male” before surgeon in the prompt. We compared 3 “female” letters to 3 “male” letters for differences in length, language, and tone. The letters written for females averaged 298 words compared to 314 for males. Female letters more frequently referred to “compassion”, “empathy”, and “inclusivity”; whereas male letters referred to “respect”, “reputation”, and “skill”. These findings highlight the gender bias present in promotion letters generated by ChatGPT, reiterating existing literature regarding real letters of recommendation in academic surgery. Our study suggests that surgeons should use AI tools, such as ChatGPT, with caution when writing LORs for academic surgery faculty promotion.</description><identifier>ISSN: 1931-7204</identifier><identifier>ISSN: 1878-7452</identifier><identifier>EISSN: 1878-7452</identifier><identifier>DOI: 10.1016/j.jsurg.2024.07.023</identifier><identifier>PMID: 39232303</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>academic promotions ; artificial intelligence ; Career Mobility ; ChatGPT ; Correspondence as Topic ; Faculty, Medical ; Female ; Gender disparities in medicine ; General Surgery - education ; Humans ; implicit bias ; letters of recommendation ; Male ; Personnel Selection ; Sexism</subject><ispartof>Journal of surgical education, 2024-11, Vol.81 (11), p.1553-1557</ispartof><rights>2024 Association of Program Directors in Surgery</rights><rights>Copyright © 2024 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c239t-9538e47fdd6fcc9e126588b36d8ab209d28d7cc5bc2ad2a7c7e9f411392f66053</cites><orcidid>0000-0003-4252-7065 ; 0000-0002-5708-2022 ; 0000-0002-6509-789X ; 0000-0002-3327-2294 ; 0009-0008-0937-7978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsurg.2024.07.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39232303$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Desai, Pooja</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Davis, Lindy</creatorcontrib><creatorcontrib>Ullmann, Timothy M.</creatorcontrib><creatorcontrib>DiBrito, Sandra R.</creatorcontrib><title>Bias Perpetuates Bias: ChatGPT Learns Gender Inequities in Academic Surgery Promotions</title><title>Journal of surgical education</title><addtitle>J Surg Educ</addtitle><description>•Implicit bias is well documented in medicine, specifically surgery.•Implicit bias, specifically gender inequities, have been previously seen in letters of recommendation.•Artificial intelligence large language models, such as chatGPT, echo existing gender inequities when asked to write letters of recommendation for academic promotion in surgery. Gender inequities persist in academic surgery with implicit bias impacting hiring and promotion at all levels. We hypothesized that creating letters of recommendation for both female and male candidates for academic promotion in surgery using an AI platform, ChatGPT, would elucidate the entrained gender biases already present in the promotion process. Using ChatGPT, we generated 6 letters of recommendation for “a phenomenal surgeon applying for job promotion to associate professor position”, specifying “female” or “male” before surgeon in the prompt. We compared 3 “female” letters to 3 “male” letters for differences in length, language, and tone. The letters written for females averaged 298 words compared to 314 for males. Female letters more frequently referred to “compassion”, “empathy”, and “inclusivity”; whereas male letters referred to “respect”, “reputation”, and “skill”. These findings highlight the gender bias present in promotion letters generated by ChatGPT, reiterating existing literature regarding real letters of recommendation in academic surgery. Our study suggests that surgeons should use AI tools, such as ChatGPT, with caution when writing LORs for academic surgery faculty promotion.</description><subject>academic promotions</subject><subject>artificial intelligence</subject><subject>Career Mobility</subject><subject>ChatGPT</subject><subject>Correspondence as Topic</subject><subject>Faculty, Medical</subject><subject>Female</subject><subject>Gender disparities in medicine</subject><subject>General Surgery - education</subject><subject>Humans</subject><subject>implicit bias</subject><subject>letters of recommendation</subject><subject>Male</subject><subject>Personnel Selection</subject><subject>Sexism</subject><issn>1931-7204</issn><issn>1878-7452</issn><issn>1878-7452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kFtLwzAUgIMobk5_gSB59KU1l7ZpBB906BwMHDh9DVlyqhlruyWtsH9v66aPPp3D4Tu3D6FLSmJKaHazileh9R8xIyyJiYgJ40doSHORRyJJ2XGXS04jwUgyQGchrAhJE8nkKRpwyTjjhA_R-4PTAc_Bb6BpdQMB94VbPP7UzWS-wDPQvgp4ApUFj6cVbFvXuA5zFb432kLpDH7tzgC_w3Nfl3Xj6iqco5NCrwNcHOIIvT09LsbP0exlMh3fzyLDuGwimfIcElFYmxXGSKAsS_N8yTOb6yUj0rLcCmPSpWHaMi2MAFkklHb3F1lGUj5C1_u5G19vWwiNKl0wsF7rCuo2KE4JkTShaY_yPWp8HYKHQm28K7XfKUpUL1St1I9Q1QtVRKhOaNd1dVjQLkuwfz2_Bjvgbg9A9-aXA6-CcVAZsM6DaZSt3b8LvgFTlYfU</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Desai, Pooja</creator><creator>Wang, Hao</creator><creator>Davis, Lindy</creator><creator>Ullmann, Timothy M.</creator><creator>DiBrito, Sandra R.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4252-7065</orcidid><orcidid>https://orcid.org/0000-0002-5708-2022</orcidid><orcidid>https://orcid.org/0000-0002-6509-789X</orcidid><orcidid>https://orcid.org/0000-0002-3327-2294</orcidid><orcidid>https://orcid.org/0009-0008-0937-7978</orcidid></search><sort><creationdate>202411</creationdate><title>Bias Perpetuates Bias: ChatGPT Learns Gender Inequities in Academic Surgery Promotions</title><author>Desai, Pooja ; Wang, Hao ; Davis, Lindy ; Ullmann, Timothy M. ; DiBrito, Sandra R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c239t-9538e47fdd6fcc9e126588b36d8ab209d28d7cc5bc2ad2a7c7e9f411392f66053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>academic promotions</topic><topic>artificial intelligence</topic><topic>Career Mobility</topic><topic>ChatGPT</topic><topic>Correspondence as Topic</topic><topic>Faculty, Medical</topic><topic>Female</topic><topic>Gender disparities in medicine</topic><topic>General Surgery - education</topic><topic>Humans</topic><topic>implicit bias</topic><topic>letters of recommendation</topic><topic>Male</topic><topic>Personnel Selection</topic><topic>Sexism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desai, Pooja</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Davis, Lindy</creatorcontrib><creatorcontrib>Ullmann, Timothy M.</creatorcontrib><creatorcontrib>DiBrito, Sandra R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of surgical education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desai, Pooja</au><au>Wang, Hao</au><au>Davis, Lindy</au><au>Ullmann, Timothy M.</au><au>DiBrito, Sandra R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bias Perpetuates Bias: ChatGPT Learns Gender Inequities in Academic Surgery Promotions</atitle><jtitle>Journal of surgical education</jtitle><addtitle>J Surg Educ</addtitle><date>2024-11</date><risdate>2024</risdate><volume>81</volume><issue>11</issue><spage>1553</spage><epage>1557</epage><pages>1553-1557</pages><issn>1931-7204</issn><issn>1878-7452</issn><eissn>1878-7452</eissn><abstract>•Implicit bias is well documented in medicine, specifically surgery.•Implicit bias, specifically gender inequities, have been previously seen in letters of recommendation.•Artificial intelligence large language models, such as chatGPT, echo existing gender inequities when asked to write letters of recommendation for academic promotion in surgery. Gender inequities persist in academic surgery with implicit bias impacting hiring and promotion at all levels. We hypothesized that creating letters of recommendation for both female and male candidates for academic promotion in surgery using an AI platform, ChatGPT, would elucidate the entrained gender biases already present in the promotion process. Using ChatGPT, we generated 6 letters of recommendation for “a phenomenal surgeon applying for job promotion to associate professor position”, specifying “female” or “male” before surgeon in the prompt. We compared 3 “female” letters to 3 “male” letters for differences in length, language, and tone. The letters written for females averaged 298 words compared to 314 for males. Female letters more frequently referred to “compassion”, “empathy”, and “inclusivity”; whereas male letters referred to “respect”, “reputation”, and “skill”. These findings highlight the gender bias present in promotion letters generated by ChatGPT, reiterating existing literature regarding real letters of recommendation in academic surgery. Our study suggests that surgeons should use AI tools, such as ChatGPT, with caution when writing LORs for academic surgery faculty promotion.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39232303</pmid><doi>10.1016/j.jsurg.2024.07.023</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4252-7065</orcidid><orcidid>https://orcid.org/0000-0002-5708-2022</orcidid><orcidid>https://orcid.org/0000-0002-6509-789X</orcidid><orcidid>https://orcid.org/0000-0002-3327-2294</orcidid><orcidid>https://orcid.org/0009-0008-0937-7978</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1931-7204
ispartof Journal of surgical education, 2024-11, Vol.81 (11), p.1553-1557
issn 1931-7204
1878-7452
1878-7452
language eng
recordid cdi_proquest_miscellaneous_3100914155
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects academic promotions
artificial intelligence
Career Mobility
ChatGPT
Correspondence as Topic
Faculty, Medical
Female
Gender disparities in medicine
General Surgery - education
Humans
implicit bias
letters of recommendation
Male
Personnel Selection
Sexism
title Bias Perpetuates Bias: ChatGPT Learns Gender Inequities in Academic Surgery Promotions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A34%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bias%20Perpetuates%20Bias:%20ChatGPT%20Learns%20Gender%20Inequities%20in%20Academic%20Surgery%20Promotions&rft.jtitle=Journal%20of%20surgical%20education&rft.au=Desai,%20Pooja&rft.date=2024-11&rft.volume=81&rft.issue=11&rft.spage=1553&rft.epage=1557&rft.pages=1553-1557&rft.issn=1931-7204&rft.eissn=1878-7452&rft_id=info:doi/10.1016/j.jsurg.2024.07.023&rft_dat=%3Cproquest_cross%3E3100914155%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100914155&rft_id=info:pmid/39232303&rft_els_id=S1931720424003465&rfr_iscdi=true