Porous Spindle-Knot Fiber by Fiber-Microfluidic Phase Separation for Water Collection and Nanopatterning

Porous spindle-knot structures have been found in many creatures, such as spider silk and the root of the soybean plant, which show interesting functions such as droplet collection or biotransformation. However, continuous fabrication of precisely controlled porous spindle-knots presents a big chall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-09, Vol.16 (37), p.49823-49833
Hauptverfasser: Zou, Taiwei, Ji, Zhongfeng, Cai, Wenrui, Yang, Jiarui, Wen, Guojiang, Fu, Xuewei, Yang, Wei, Wang, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49833
container_issue 37
container_start_page 49823
container_title ACS applied materials & interfaces
container_volume 16
creator Zou, Taiwei
Ji, Zhongfeng
Cai, Wenrui
Yang, Jiarui
Wen, Guojiang
Fu, Xuewei
Yang, Wei
Wang, Yu
description Porous spindle-knot structures have been found in many creatures, such as spider silk and the root of the soybean plant, which show interesting functions such as droplet collection or biotransformation. However, continuous fabrication of precisely controlled porous spindle-knots presents a big challenge, particularly in striking a balance among good structural controllability, low-cost, and functions. Here, we propose a concept of a fiber-microfluidics phase separation (FMF-PS) strategy to address the above challenge. This FMF-PS combines the advantages of a microchannel regulated Rayleigh instability of polymer solution coated onto a fiber with the nonsolvent-induced phase separation of the polymer solution, which enables continuous and cost-effective production of porous spindle-knot fiber (PSKF) with well-controlled size and porous structures. The critical factors controlling the geometry and the porous structures of the spindle-knot by FMF-PS have been systematically investigated. For applications, the PSKF exhibited faster water droplet nucleation, growth, and maximum water collection capability, compared to the control samples, as revealed by in situ water collection growth curves. Furthermore, high-level fabrics of the PSKFs, including a two-dimensional network and three-dimensional architecture, have been demonstrated for both large-scale water collection and art performance. Finally, the PSKF is demonstrated as a programmable building block for surface nanopatterning.
doi_str_mv 10.1021/acsami.4c11407
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3100565346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100565346</sourcerecordid><originalsourceid>FETCH-LOGICAL-a215t-808b4fb3a997f0448b6a5a5878e9fc3c3a8d2ec7956c091eaa59c97f43a9528c3</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EouVx5YhyREgpfibxEVUUEE8JEMdo4zjgKrWDnRz67zGk9MZpV7vfjDSD0AnBM4IpuQAVYGVmXBHCcb6DpkRynhZU0N3tzvkEHYSwxDhjFIt9NGGSMky5nKLPZ-fdEJKXzti61emddX2yMJX2SbUel_TBKO-adjC1UcnzJwSdvOgOPPTG2aRxPnmHPgrmrm21-j2CrZNHsK6DPn6ssR9HaK-BNujjzTxEb4ur1_lNev90fTu_vE-BEtGnBS4q3lQMpMwbzHlRZSBAFHmhZaOYYlDUVKtcikxhSTSAkCqiPCoELRQ7RGejb-fd16BDX65MULptweoYtGQEY5EJxrOIzkY0xgvB66bsvFmBX5cElz_tlmO75abdKDjdeA_VStdb_K_OCJyPQBSWSzd4G6P-5_YNaZ6FWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100565346</pqid></control><display><type>article</type><title>Porous Spindle-Knot Fiber by Fiber-Microfluidic Phase Separation for Water Collection and Nanopatterning</title><source>American Chemical Society Journals</source><creator>Zou, Taiwei ; Ji, Zhongfeng ; Cai, Wenrui ; Yang, Jiarui ; Wen, Guojiang ; Fu, Xuewei ; Yang, Wei ; Wang, Yu</creator><creatorcontrib>Zou, Taiwei ; Ji, Zhongfeng ; Cai, Wenrui ; Yang, Jiarui ; Wen, Guojiang ; Fu, Xuewei ; Yang, Wei ; Wang, Yu</creatorcontrib><description>Porous spindle-knot structures have been found in many creatures, such as spider silk and the root of the soybean plant, which show interesting functions such as droplet collection or biotransformation. However, continuous fabrication of precisely controlled porous spindle-knots presents a big challenge, particularly in striking a balance among good structural controllability, low-cost, and functions. Here, we propose a concept of a fiber-microfluidics phase separation (FMF-PS) strategy to address the above challenge. This FMF-PS combines the advantages of a microchannel regulated Rayleigh instability of polymer solution coated onto a fiber with the nonsolvent-induced phase separation of the polymer solution, which enables continuous and cost-effective production of porous spindle-knot fiber (PSKF) with well-controlled size and porous structures. The critical factors controlling the geometry and the porous structures of the spindle-knot by FMF-PS have been systematically investigated. For applications, the PSKF exhibited faster water droplet nucleation, growth, and maximum water collection capability, compared to the control samples, as revealed by in situ water collection growth curves. Furthermore, high-level fabrics of the PSKFs, including a two-dimensional network and three-dimensional architecture, have been demonstrated for both large-scale water collection and art performance. Finally, the PSKF is demonstrated as a programmable building block for surface nanopatterning.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c11407</identifier><identifier>PMID: 39230249</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Applications of Polymer, Composite, and Coating Materials</subject><ispartof>ACS applied materials &amp; interfaces, 2024-09, Vol.16 (37), p.49823-49833</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a215t-808b4fb3a997f0448b6a5a5878e9fc3c3a8d2ec7956c091eaa59c97f43a9528c3</cites><orcidid>0000-0003-0198-1632 ; 0000-0003-1155-9144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c11407$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c11407$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39230249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zou, Taiwei</creatorcontrib><creatorcontrib>Ji, Zhongfeng</creatorcontrib><creatorcontrib>Cai, Wenrui</creatorcontrib><creatorcontrib>Yang, Jiarui</creatorcontrib><creatorcontrib>Wen, Guojiang</creatorcontrib><creatorcontrib>Fu, Xuewei</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><title>Porous Spindle-Knot Fiber by Fiber-Microfluidic Phase Separation for Water Collection and Nanopatterning</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Porous spindle-knot structures have been found in many creatures, such as spider silk and the root of the soybean plant, which show interesting functions such as droplet collection or biotransformation. However, continuous fabrication of precisely controlled porous spindle-knots presents a big challenge, particularly in striking a balance among good structural controllability, low-cost, and functions. Here, we propose a concept of a fiber-microfluidics phase separation (FMF-PS) strategy to address the above challenge. This FMF-PS combines the advantages of a microchannel regulated Rayleigh instability of polymer solution coated onto a fiber with the nonsolvent-induced phase separation of the polymer solution, which enables continuous and cost-effective production of porous spindle-knot fiber (PSKF) with well-controlled size and porous structures. The critical factors controlling the geometry and the porous structures of the spindle-knot by FMF-PS have been systematically investigated. For applications, the PSKF exhibited faster water droplet nucleation, growth, and maximum water collection capability, compared to the control samples, as revealed by in situ water collection growth curves. Furthermore, high-level fabrics of the PSKFs, including a two-dimensional network and three-dimensional architecture, have been demonstrated for both large-scale water collection and art performance. Finally, the PSKF is demonstrated as a programmable building block for surface nanopatterning.</description><subject>Applications of Polymer, Composite, and Coating Materials</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EouVx5YhyREgpfibxEVUUEE8JEMdo4zjgKrWDnRz67zGk9MZpV7vfjDSD0AnBM4IpuQAVYGVmXBHCcb6DpkRynhZU0N3tzvkEHYSwxDhjFIt9NGGSMky5nKLPZ-fdEJKXzti61emddX2yMJX2SbUel_TBKO-adjC1UcnzJwSdvOgOPPTG2aRxPnmHPgrmrm21-j2CrZNHsK6DPn6ssR9HaK-BNujjzTxEb4ur1_lNev90fTu_vE-BEtGnBS4q3lQMpMwbzHlRZSBAFHmhZaOYYlDUVKtcikxhSTSAkCqiPCoELRQ7RGejb-fd16BDX65MULptweoYtGQEY5EJxrOIzkY0xgvB66bsvFmBX5cElz_tlmO75abdKDjdeA_VStdb_K_OCJyPQBSWSzd4G6P-5_YNaZ6FWg</recordid><startdate>20240918</startdate><enddate>20240918</enddate><creator>Zou, Taiwei</creator><creator>Ji, Zhongfeng</creator><creator>Cai, Wenrui</creator><creator>Yang, Jiarui</creator><creator>Wen, Guojiang</creator><creator>Fu, Xuewei</creator><creator>Yang, Wei</creator><creator>Wang, Yu</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0198-1632</orcidid><orcidid>https://orcid.org/0000-0003-1155-9144</orcidid></search><sort><creationdate>20240918</creationdate><title>Porous Spindle-Knot Fiber by Fiber-Microfluidic Phase Separation for Water Collection and Nanopatterning</title><author>Zou, Taiwei ; Ji, Zhongfeng ; Cai, Wenrui ; Yang, Jiarui ; Wen, Guojiang ; Fu, Xuewei ; Yang, Wei ; Wang, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a215t-808b4fb3a997f0448b6a5a5878e9fc3c3a8d2ec7956c091eaa59c97f43a9528c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Polymer, Composite, and Coating Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Taiwei</creatorcontrib><creatorcontrib>Ji, Zhongfeng</creatorcontrib><creatorcontrib>Cai, Wenrui</creatorcontrib><creatorcontrib>Yang, Jiarui</creatorcontrib><creatorcontrib>Wen, Guojiang</creatorcontrib><creatorcontrib>Fu, Xuewei</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Taiwei</au><au>Ji, Zhongfeng</au><au>Cai, Wenrui</au><au>Yang, Jiarui</au><au>Wen, Guojiang</au><au>Fu, Xuewei</au><au>Yang, Wei</au><au>Wang, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous Spindle-Knot Fiber by Fiber-Microfluidic Phase Separation for Water Collection and Nanopatterning</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-09-18</date><risdate>2024</risdate><volume>16</volume><issue>37</issue><spage>49823</spage><epage>49833</epage><pages>49823-49833</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Porous spindle-knot structures have been found in many creatures, such as spider silk and the root of the soybean plant, which show interesting functions such as droplet collection or biotransformation. However, continuous fabrication of precisely controlled porous spindle-knots presents a big challenge, particularly in striking a balance among good structural controllability, low-cost, and functions. Here, we propose a concept of a fiber-microfluidics phase separation (FMF-PS) strategy to address the above challenge. This FMF-PS combines the advantages of a microchannel regulated Rayleigh instability of polymer solution coated onto a fiber with the nonsolvent-induced phase separation of the polymer solution, which enables continuous and cost-effective production of porous spindle-knot fiber (PSKF) with well-controlled size and porous structures. The critical factors controlling the geometry and the porous structures of the spindle-knot by FMF-PS have been systematically investigated. For applications, the PSKF exhibited faster water droplet nucleation, growth, and maximum water collection capability, compared to the control samples, as revealed by in situ water collection growth curves. Furthermore, high-level fabrics of the PSKFs, including a two-dimensional network and three-dimensional architecture, have been demonstrated for both large-scale water collection and art performance. Finally, the PSKF is demonstrated as a programmable building block for surface nanopatterning.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39230249</pmid><doi>10.1021/acsami.4c11407</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0198-1632</orcidid><orcidid>https://orcid.org/0000-0003-1155-9144</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-09, Vol.16 (37), p.49823-49833
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3100565346
source American Chemical Society Journals
subjects Applications of Polymer, Composite, and Coating Materials
title Porous Spindle-Knot Fiber by Fiber-Microfluidic Phase Separation for Water Collection and Nanopatterning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A06%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20Spindle-Knot%20Fiber%20by%20Fiber-Microfluidic%20Phase%20Separation%20for%20Water%20Collection%20and%20Nanopatterning&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zou,%20Taiwei&rft.date=2024-09-18&rft.volume=16&rft.issue=37&rft.spage=49823&rft.epage=49833&rft.pages=49823-49833&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c11407&rft_dat=%3Cproquest_cross%3E3100565346%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100565346&rft_id=info:pmid/39230249&rfr_iscdi=true