Porous Spindle-Knot Fiber by Fiber-Microfluidic Phase Separation for Water Collection and Nanopatterning
Porous spindle-knot structures have been found in many creatures, such as spider silk and the root of the soybean plant, which show interesting functions such as droplet collection or biotransformation. However, continuous fabrication of precisely controlled porous spindle-knots presents a big chall...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-09, Vol.16 (37), p.49823-49833 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 49833 |
---|---|
container_issue | 37 |
container_start_page | 49823 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Zou, Taiwei Ji, Zhongfeng Cai, Wenrui Yang, Jiarui Wen, Guojiang Fu, Xuewei Yang, Wei Wang, Yu |
description | Porous spindle-knot structures have been found in many creatures, such as spider silk and the root of the soybean plant, which show interesting functions such as droplet collection or biotransformation. However, continuous fabrication of precisely controlled porous spindle-knots presents a big challenge, particularly in striking a balance among good structural controllability, low-cost, and functions. Here, we propose a concept of a fiber-microfluidics phase separation (FMF-PS) strategy to address the above challenge. This FMF-PS combines the advantages of a microchannel regulated Rayleigh instability of polymer solution coated onto a fiber with the nonsolvent-induced phase separation of the polymer solution, which enables continuous and cost-effective production of porous spindle-knot fiber (PSKF) with well-controlled size and porous structures. The critical factors controlling the geometry and the porous structures of the spindle-knot by FMF-PS have been systematically investigated. For applications, the PSKF exhibited faster water droplet nucleation, growth, and maximum water collection capability, compared to the control samples, as revealed by in situ water collection growth curves. Furthermore, high-level fabrics of the PSKFs, including a two-dimensional network and three-dimensional architecture, have been demonstrated for both large-scale water collection and art performance. Finally, the PSKF is demonstrated as a programmable building block for surface nanopatterning. |
doi_str_mv | 10.1021/acsami.4c11407 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3100565346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100565346</sourcerecordid><originalsourceid>FETCH-LOGICAL-a215t-808b4fb3a997f0448b6a5a5878e9fc3c3a8d2ec7956c091eaa59c97f43a9528c3</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EouVx5YhyREgpfibxEVUUEE8JEMdo4zjgKrWDnRz67zGk9MZpV7vfjDSD0AnBM4IpuQAVYGVmXBHCcb6DpkRynhZU0N3tzvkEHYSwxDhjFIt9NGGSMky5nKLPZ-fdEJKXzti61emddX2yMJX2SbUel_TBKO-adjC1UcnzJwSdvOgOPPTG2aRxPnmHPgrmrm21-j2CrZNHsK6DPn6ssR9HaK-BNujjzTxEb4ur1_lNev90fTu_vE-BEtGnBS4q3lQMpMwbzHlRZSBAFHmhZaOYYlDUVKtcikxhSTSAkCqiPCoELRQ7RGejb-fd16BDX65MULptweoYtGQEY5EJxrOIzkY0xgvB66bsvFmBX5cElz_tlmO75abdKDjdeA_VStdb_K_OCJyPQBSWSzd4G6P-5_YNaZ6FWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100565346</pqid></control><display><type>article</type><title>Porous Spindle-Knot Fiber by Fiber-Microfluidic Phase Separation for Water Collection and Nanopatterning</title><source>American Chemical Society Journals</source><creator>Zou, Taiwei ; Ji, Zhongfeng ; Cai, Wenrui ; Yang, Jiarui ; Wen, Guojiang ; Fu, Xuewei ; Yang, Wei ; Wang, Yu</creator><creatorcontrib>Zou, Taiwei ; Ji, Zhongfeng ; Cai, Wenrui ; Yang, Jiarui ; Wen, Guojiang ; Fu, Xuewei ; Yang, Wei ; Wang, Yu</creatorcontrib><description>Porous spindle-knot structures have been found in many creatures, such as spider silk and the root of the soybean plant, which show interesting functions such as droplet collection or biotransformation. However, continuous fabrication of precisely controlled porous spindle-knots presents a big challenge, particularly in striking a balance among good structural controllability, low-cost, and functions. Here, we propose a concept of a fiber-microfluidics phase separation (FMF-PS) strategy to address the above challenge. This FMF-PS combines the advantages of a microchannel regulated Rayleigh instability of polymer solution coated onto a fiber with the nonsolvent-induced phase separation of the polymer solution, which enables continuous and cost-effective production of porous spindle-knot fiber (PSKF) with well-controlled size and porous structures. The critical factors controlling the geometry and the porous structures of the spindle-knot by FMF-PS have been systematically investigated. For applications, the PSKF exhibited faster water droplet nucleation, growth, and maximum water collection capability, compared to the control samples, as revealed by in situ water collection growth curves. Furthermore, high-level fabrics of the PSKFs, including a two-dimensional network and three-dimensional architecture, have been demonstrated for both large-scale water collection and art performance. Finally, the PSKF is demonstrated as a programmable building block for surface nanopatterning.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c11407</identifier><identifier>PMID: 39230249</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Applications of Polymer, Composite, and Coating Materials</subject><ispartof>ACS applied materials & interfaces, 2024-09, Vol.16 (37), p.49823-49833</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a215t-808b4fb3a997f0448b6a5a5878e9fc3c3a8d2ec7956c091eaa59c97f43a9528c3</cites><orcidid>0000-0003-0198-1632 ; 0000-0003-1155-9144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c11407$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c11407$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39230249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zou, Taiwei</creatorcontrib><creatorcontrib>Ji, Zhongfeng</creatorcontrib><creatorcontrib>Cai, Wenrui</creatorcontrib><creatorcontrib>Yang, Jiarui</creatorcontrib><creatorcontrib>Wen, Guojiang</creatorcontrib><creatorcontrib>Fu, Xuewei</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><title>Porous Spindle-Knot Fiber by Fiber-Microfluidic Phase Separation for Water Collection and Nanopatterning</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Porous spindle-knot structures have been found in many creatures, such as spider silk and the root of the soybean plant, which show interesting functions such as droplet collection or biotransformation. However, continuous fabrication of precisely controlled porous spindle-knots presents a big challenge, particularly in striking a balance among good structural controllability, low-cost, and functions. Here, we propose a concept of a fiber-microfluidics phase separation (FMF-PS) strategy to address the above challenge. This FMF-PS combines the advantages of a microchannel regulated Rayleigh instability of polymer solution coated onto a fiber with the nonsolvent-induced phase separation of the polymer solution, which enables continuous and cost-effective production of porous spindle-knot fiber (PSKF) with well-controlled size and porous structures. The critical factors controlling the geometry and the porous structures of the spindle-knot by FMF-PS have been systematically investigated. For applications, the PSKF exhibited faster water droplet nucleation, growth, and maximum water collection capability, compared to the control samples, as revealed by in situ water collection growth curves. Furthermore, high-level fabrics of the PSKFs, including a two-dimensional network and three-dimensional architecture, have been demonstrated for both large-scale water collection and art performance. Finally, the PSKF is demonstrated as a programmable building block for surface nanopatterning.</description><subject>Applications of Polymer, Composite, and Coating Materials</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EouVx5YhyREgpfibxEVUUEE8JEMdo4zjgKrWDnRz67zGk9MZpV7vfjDSD0AnBM4IpuQAVYGVmXBHCcb6DpkRynhZU0N3tzvkEHYSwxDhjFIt9NGGSMky5nKLPZ-fdEJKXzti61emddX2yMJX2SbUel_TBKO-adjC1UcnzJwSdvOgOPPTG2aRxPnmHPgrmrm21-j2CrZNHsK6DPn6ssR9HaK-BNujjzTxEb4ur1_lNev90fTu_vE-BEtGnBS4q3lQMpMwbzHlRZSBAFHmhZaOYYlDUVKtcikxhSTSAkCqiPCoELRQ7RGejb-fd16BDX65MULptweoYtGQEY5EJxrOIzkY0xgvB66bsvFmBX5cElz_tlmO75abdKDjdeA_VStdb_K_OCJyPQBSWSzd4G6P-5_YNaZ6FWg</recordid><startdate>20240918</startdate><enddate>20240918</enddate><creator>Zou, Taiwei</creator><creator>Ji, Zhongfeng</creator><creator>Cai, Wenrui</creator><creator>Yang, Jiarui</creator><creator>Wen, Guojiang</creator><creator>Fu, Xuewei</creator><creator>Yang, Wei</creator><creator>Wang, Yu</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0198-1632</orcidid><orcidid>https://orcid.org/0000-0003-1155-9144</orcidid></search><sort><creationdate>20240918</creationdate><title>Porous Spindle-Knot Fiber by Fiber-Microfluidic Phase Separation for Water Collection and Nanopatterning</title><author>Zou, Taiwei ; Ji, Zhongfeng ; Cai, Wenrui ; Yang, Jiarui ; Wen, Guojiang ; Fu, Xuewei ; Yang, Wei ; Wang, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a215t-808b4fb3a997f0448b6a5a5878e9fc3c3a8d2ec7956c091eaa59c97f43a9528c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Polymer, Composite, and Coating Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Taiwei</creatorcontrib><creatorcontrib>Ji, Zhongfeng</creatorcontrib><creatorcontrib>Cai, Wenrui</creatorcontrib><creatorcontrib>Yang, Jiarui</creatorcontrib><creatorcontrib>Wen, Guojiang</creatorcontrib><creatorcontrib>Fu, Xuewei</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Taiwei</au><au>Ji, Zhongfeng</au><au>Cai, Wenrui</au><au>Yang, Jiarui</au><au>Wen, Guojiang</au><au>Fu, Xuewei</au><au>Yang, Wei</au><au>Wang, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous Spindle-Knot Fiber by Fiber-Microfluidic Phase Separation for Water Collection and Nanopatterning</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-09-18</date><risdate>2024</risdate><volume>16</volume><issue>37</issue><spage>49823</spage><epage>49833</epage><pages>49823-49833</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Porous spindle-knot structures have been found in many creatures, such as spider silk and the root of the soybean plant, which show interesting functions such as droplet collection or biotransformation. However, continuous fabrication of precisely controlled porous spindle-knots presents a big challenge, particularly in striking a balance among good structural controllability, low-cost, and functions. Here, we propose a concept of a fiber-microfluidics phase separation (FMF-PS) strategy to address the above challenge. This FMF-PS combines the advantages of a microchannel regulated Rayleigh instability of polymer solution coated onto a fiber with the nonsolvent-induced phase separation of the polymer solution, which enables continuous and cost-effective production of porous spindle-knot fiber (PSKF) with well-controlled size and porous structures. The critical factors controlling the geometry and the porous structures of the spindle-knot by FMF-PS have been systematically investigated. For applications, the PSKF exhibited faster water droplet nucleation, growth, and maximum water collection capability, compared to the control samples, as revealed by in situ water collection growth curves. Furthermore, high-level fabrics of the PSKFs, including a two-dimensional network and three-dimensional architecture, have been demonstrated for both large-scale water collection and art performance. Finally, the PSKF is demonstrated as a programmable building block for surface nanopatterning.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39230249</pmid><doi>10.1021/acsami.4c11407</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0198-1632</orcidid><orcidid>https://orcid.org/0000-0003-1155-9144</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-09, Vol.16 (37), p.49823-49833 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_3100565346 |
source | American Chemical Society Journals |
subjects | Applications of Polymer, Composite, and Coating Materials |
title | Porous Spindle-Knot Fiber by Fiber-Microfluidic Phase Separation for Water Collection and Nanopatterning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A06%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20Spindle-Knot%20Fiber%20by%20Fiber-Microfluidic%20Phase%20Separation%20for%20Water%20Collection%20and%20Nanopatterning&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zou,%20Taiwei&rft.date=2024-09-18&rft.volume=16&rft.issue=37&rft.spage=49823&rft.epage=49833&rft.pages=49823-49833&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c11407&rft_dat=%3Cproquest_cross%3E3100565346%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100565346&rft_id=info:pmid/39230249&rfr_iscdi=true |