Automatic Diagnosis of Hepatocellular Carcinoma and Metastases Based on Computed Tomography Images

Liver cancer, a leading cause of cancer mortality, is often diagnosed by analyzing the grayscale variations in liver tissue across different computed tomography (CT) images. However, the intensity similarity can be strong, making it difficult for radiologists to visually identify hepatocellular carc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of imaging informatics in medicine 2024-09
Hauptverfasser: Zossou, Vincent-Béni Sèna, Rodrigue Gnangnon, Freddy Houéhanou, Biaou, Olivier, de Vathaire, Florent, Allodji, Rodrigue S, Ezin, Eugène C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of imaging informatics in medicine
container_volume
creator Zossou, Vincent-Béni Sèna
Rodrigue Gnangnon, Freddy Houéhanou
Biaou, Olivier
de Vathaire, Florent
Allodji, Rodrigue S
Ezin, Eugène C
description Liver cancer, a leading cause of cancer mortality, is often diagnosed by analyzing the grayscale variations in liver tissue across different computed tomography (CT) images. However, the intensity similarity can be strong, making it difficult for radiologists to visually identify hepatocellular carcinoma (HCC) and metastases. It is crucial for the management and prevention strategies to accurately differentiate between these two liver cancers. This study proposes an automated system using a convolutional neural network (CNN) to enhance diagnostic accuracy to detect HCC, metastasis, and healthy liver tissue. This system incorporates automatic segmentation and classification. The liver lesions segmentation model is implemented using residual attention U-Net. A 9-layer CNN classifier implements the lesions classification model. Its input is the combination of the results of the segmentation model with original images. The dataset included 300 patients, with 223 used to develop the segmentation model and 77 to test it. These 77 patients also served as inputs for the classification model, consisting of 20 HCC cases, 27 with metastasis, and 30 healthy. The system achieved a mean Dice score of in segmentation and a mean accuracy of in classification, both in the test phase. The proposed method is a preliminary study with great potential in helping radiologists diagnose liver cancers.
doi_str_mv 10.1007/s10278-024-01192-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3100561088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100561088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c184t-db4dbc93adfc4ff008a0e6d064610d74c9153426116e495095d189c533e3bc013</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EolXpH-CAfOQSWD_y8LGERysVcSlny7GdEpTEIU5U9d_j0oKQVrtzmBlpP4SuCdwRgPTeE6BpFgHlERAiaLQ7Q1MqeBZRwdj5Pz1Bc-8_AYAxwlgCl2jCBKVpzLIpKhbj4Bo1VBo_VmrbOl957Eq8tJ0anLZ1Pdaqx7nqddUGI1atwa92UD6M9fghbINdi3PXdOMQ9MY1btur7mOPV43aWn-FLkpVezs_3Rl6f37a5Mto_fayyhfrSJOMD5EpuCm0YMqUmpclQKbAJgYSnhAwKdeCxIzThJDEchGDiA3JhI4Zs6zQQNgM3R57u959jdYPsqn84QPVWjd6yQK3OHRlWbDSo1X3zvvelrLrq0b1e0lAHvDKI14Z8MofvHIXQjen_rForPmL_MJk35H2deo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100561088</pqid></control><display><type>article</type><title>Automatic Diagnosis of Hepatocellular Carcinoma and Metastases Based on Computed Tomography Images</title><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zossou, Vincent-Béni Sèna ; Rodrigue Gnangnon, Freddy Houéhanou ; Biaou, Olivier ; de Vathaire, Florent ; Allodji, Rodrigue S ; Ezin, Eugène C</creator><creatorcontrib>Zossou, Vincent-Béni Sèna ; Rodrigue Gnangnon, Freddy Houéhanou ; Biaou, Olivier ; de Vathaire, Florent ; Allodji, Rodrigue S ; Ezin, Eugène C</creatorcontrib><description>Liver cancer, a leading cause of cancer mortality, is often diagnosed by analyzing the grayscale variations in liver tissue across different computed tomography (CT) images. However, the intensity similarity can be strong, making it difficult for radiologists to visually identify hepatocellular carcinoma (HCC) and metastases. It is crucial for the management and prevention strategies to accurately differentiate between these two liver cancers. This study proposes an automated system using a convolutional neural network (CNN) to enhance diagnostic accuracy to detect HCC, metastasis, and healthy liver tissue. This system incorporates automatic segmentation and classification. The liver lesions segmentation model is implemented using residual attention U-Net. A 9-layer CNN classifier implements the lesions classification model. Its input is the combination of the results of the segmentation model with original images. The dataset included 300 patients, with 223 used to develop the segmentation model and 77 to test it. These 77 patients also served as inputs for the classification model, consisting of 20 HCC cases, 27 with metastasis, and 30 healthy. The system achieved a mean Dice score of in segmentation and a mean accuracy of in classification, both in the test phase. The proposed method is a preliminary study with great potential in helping radiologists diagnose liver cancers.</description><identifier>ISSN: 2948-2933</identifier><identifier>EISSN: 2948-2933</identifier><identifier>DOI: 10.1007/s10278-024-01192-w</identifier><identifier>PMID: 39227538</identifier><language>eng</language><publisher>Switzerland</publisher><ispartof>Journal of imaging informatics in medicine, 2024-09</ispartof><rights>2024. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c184t-db4dbc93adfc4ff008a0e6d064610d74c9153426116e495095d189c533e3bc013</cites><orcidid>0000-0001-7016-4455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39227538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zossou, Vincent-Béni Sèna</creatorcontrib><creatorcontrib>Rodrigue Gnangnon, Freddy Houéhanou</creatorcontrib><creatorcontrib>Biaou, Olivier</creatorcontrib><creatorcontrib>de Vathaire, Florent</creatorcontrib><creatorcontrib>Allodji, Rodrigue S</creatorcontrib><creatorcontrib>Ezin, Eugène C</creatorcontrib><title>Automatic Diagnosis of Hepatocellular Carcinoma and Metastases Based on Computed Tomography Images</title><title>Journal of imaging informatics in medicine</title><addtitle>J Imaging Inform Med</addtitle><description>Liver cancer, a leading cause of cancer mortality, is often diagnosed by analyzing the grayscale variations in liver tissue across different computed tomography (CT) images. However, the intensity similarity can be strong, making it difficult for radiologists to visually identify hepatocellular carcinoma (HCC) and metastases. It is crucial for the management and prevention strategies to accurately differentiate between these two liver cancers. This study proposes an automated system using a convolutional neural network (CNN) to enhance diagnostic accuracy to detect HCC, metastasis, and healthy liver tissue. This system incorporates automatic segmentation and classification. The liver lesions segmentation model is implemented using residual attention U-Net. A 9-layer CNN classifier implements the lesions classification model. Its input is the combination of the results of the segmentation model with original images. The dataset included 300 patients, with 223 used to develop the segmentation model and 77 to test it. These 77 patients also served as inputs for the classification model, consisting of 20 HCC cases, 27 with metastasis, and 30 healthy. The system achieved a mean Dice score of in segmentation and a mean accuracy of in classification, both in the test phase. The proposed method is a preliminary study with great potential in helping radiologists diagnose liver cancers.</description><issn>2948-2933</issn><issn>2948-2933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEtPwzAQhC0EolXpH-CAfOQSWD_y8LGERysVcSlny7GdEpTEIU5U9d_j0oKQVrtzmBlpP4SuCdwRgPTeE6BpFgHlERAiaLQ7Q1MqeBZRwdj5Pz1Bc-8_AYAxwlgCl2jCBKVpzLIpKhbj4Bo1VBo_VmrbOl957Eq8tJ0anLZ1Pdaqx7nqddUGI1atwa92UD6M9fghbINdi3PXdOMQ9MY1btur7mOPV43aWn-FLkpVezs_3Rl6f37a5Mto_fayyhfrSJOMD5EpuCm0YMqUmpclQKbAJgYSnhAwKdeCxIzThJDEchGDiA3JhI4Zs6zQQNgM3R57u959jdYPsqn84QPVWjd6yQK3OHRlWbDSo1X3zvvelrLrq0b1e0lAHvDKI14Z8MofvHIXQjen_rForPmL_MJk35H2deo</recordid><startdate>20240903</startdate><enddate>20240903</enddate><creator>Zossou, Vincent-Béni Sèna</creator><creator>Rodrigue Gnangnon, Freddy Houéhanou</creator><creator>Biaou, Olivier</creator><creator>de Vathaire, Florent</creator><creator>Allodji, Rodrigue S</creator><creator>Ezin, Eugène C</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7016-4455</orcidid></search><sort><creationdate>20240903</creationdate><title>Automatic Diagnosis of Hepatocellular Carcinoma and Metastases Based on Computed Tomography Images</title><author>Zossou, Vincent-Béni Sèna ; Rodrigue Gnangnon, Freddy Houéhanou ; Biaou, Olivier ; de Vathaire, Florent ; Allodji, Rodrigue S ; Ezin, Eugène C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c184t-db4dbc93adfc4ff008a0e6d064610d74c9153426116e495095d189c533e3bc013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zossou, Vincent-Béni Sèna</creatorcontrib><creatorcontrib>Rodrigue Gnangnon, Freddy Houéhanou</creatorcontrib><creatorcontrib>Biaou, Olivier</creatorcontrib><creatorcontrib>de Vathaire, Florent</creatorcontrib><creatorcontrib>Allodji, Rodrigue S</creatorcontrib><creatorcontrib>Ezin, Eugène C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of imaging informatics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zossou, Vincent-Béni Sèna</au><au>Rodrigue Gnangnon, Freddy Houéhanou</au><au>Biaou, Olivier</au><au>de Vathaire, Florent</au><au>Allodji, Rodrigue S</au><au>Ezin, Eugène C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Diagnosis of Hepatocellular Carcinoma and Metastases Based on Computed Tomography Images</atitle><jtitle>Journal of imaging informatics in medicine</jtitle><addtitle>J Imaging Inform Med</addtitle><date>2024-09-03</date><risdate>2024</risdate><issn>2948-2933</issn><eissn>2948-2933</eissn><abstract>Liver cancer, a leading cause of cancer mortality, is often diagnosed by analyzing the grayscale variations in liver tissue across different computed tomography (CT) images. However, the intensity similarity can be strong, making it difficult for radiologists to visually identify hepatocellular carcinoma (HCC) and metastases. It is crucial for the management and prevention strategies to accurately differentiate between these two liver cancers. This study proposes an automated system using a convolutional neural network (CNN) to enhance diagnostic accuracy to detect HCC, metastasis, and healthy liver tissue. This system incorporates automatic segmentation and classification. The liver lesions segmentation model is implemented using residual attention U-Net. A 9-layer CNN classifier implements the lesions classification model. Its input is the combination of the results of the segmentation model with original images. The dataset included 300 patients, with 223 used to develop the segmentation model and 77 to test it. These 77 patients also served as inputs for the classification model, consisting of 20 HCC cases, 27 with metastasis, and 30 healthy. The system achieved a mean Dice score of in segmentation and a mean accuracy of in classification, both in the test phase. The proposed method is a preliminary study with great potential in helping radiologists diagnose liver cancers.</abstract><cop>Switzerland</cop><pmid>39227538</pmid><doi>10.1007/s10278-024-01192-w</doi><orcidid>https://orcid.org/0000-0001-7016-4455</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2948-2933
ispartof Journal of imaging informatics in medicine, 2024-09
issn 2948-2933
2948-2933
language eng
recordid cdi_proquest_miscellaneous_3100561088
source PubMed Central; SpringerLink Journals - AutoHoldings
title Automatic Diagnosis of Hepatocellular Carcinoma and Metastases Based on Computed Tomography Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A06%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Diagnosis%20of%20Hepatocellular%20Carcinoma%20and%20Metastases%20Based%20on%20Computed%20Tomography%20Images&rft.jtitle=Journal%20of%20imaging%20informatics%20in%20medicine&rft.au=Zossou,%20Vincent-B%C3%A9ni%20S%C3%A8na&rft.date=2024-09-03&rft.issn=2948-2933&rft.eissn=2948-2933&rft_id=info:doi/10.1007/s10278-024-01192-w&rft_dat=%3Cproquest_cross%3E3100561088%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100561088&rft_id=info:pmid/39227538&rfr_iscdi=true