Evolution of crack-tip transformation zones in superelastic Nitinol subjected to in situ fatigue: A fracture mechanics and synchrotron X-ray microdiffraction analysis

The ultrahigh spatial resolution (∼1 μm 2) of synchrotron X-ray microdiffraction is combined with fracture mechanics techniques to directly measure in situ three-dimensional strains, phases and crystallographic alignment ahead of a growing fatigue crack (100 cycles in situ) in superelastic Nitinol....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2007-10, Vol.55 (18), p.6198-6207
Hauptverfasser: Robertson, S.W., Mehta, A., Pelton, A.R., Ritchie, R.O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6207
container_issue 18
container_start_page 6198
container_title Acta materialia
container_volume 55
creator Robertson, S.W.
Mehta, A.
Pelton, A.R.
Ritchie, R.O.
description The ultrahigh spatial resolution (∼1 μm 2) of synchrotron X-ray microdiffraction is combined with fracture mechanics techniques to directly measure in situ three-dimensional strains, phases and crystallographic alignment ahead of a growing fatigue crack (100 cycles in situ) in superelastic Nitinol. The results provide some surprising insights into the growth of cracks in phase-transforming material at the microscale. Specifically, despite a macroscopic superelastic strain recovery of 6–8% associated with the phase transformation, individual austenite grains experience local strains of less than 1.5%. This observation indicates that it is the localized process of the accommodation of the transformation and subsequent loading of the martensite that provide the main source of the large recoverable strains. Furthermore, the plastic region ahead of the crack is composed of deformed martensite. This micromechanical transformation process is dependent upon the material texture, and directly influences the transformation zone size/shape as well as the crack path.
doi_str_mv 10.1016/j.actamat.2007.07.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31004430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645407004934</els_id><sourcerecordid>1082191626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-8d6778f998fdbcdbc0f07cdf694f3482c3edaecf6bdc669d4973414d13fef5f63</originalsourceid><addsrcrecordid>eNqFkVFrFDEUhQdRsFZ_gpAXxZdZk0kmk_FFSqmtUPRFwbeQvbmxWWeSNckU1h_k7zTTXfBN4UJC8p1zSE7TvGR0wyiTb3cbA8XMpmw6SofNOp161JwxNfC2Ez1_XPe8H1spevG0eZbzjlLWDYKeNb-v7uO0FB8DiY5AMvCjLX5PSjIhu5iq63r3KwbMxAeSlz0mnEwuHsgnX3yIUz3c7hAKWlLiA-TLQlxVfl_wHbkgrtqWJSGZEe5M8JCJCZbkQ4C7FEuqAd_aZA5k9pCi9e5BsOaaYKZD9vl588SZKeOL03refP1w9eXypr39fP3x8uK2BSHH0iorh0G5cVTObqEOdXQA6-QoHBeqA47WIDi5tSDlaMU4cMGEZdyh653k583ro-8-xZ8L5qJnnwGnyQSMS9acUSoEpxV880-QUdWxkclu9eyPaH1bzgmd3ic_m3SokF4L1Dt9KlCvBep1OlV1r04RJoOZ6p8E8PmveGSjUlJU7v2Rw_ox9x6TzuAxAFqfaivaRv-fpD_Zz7mC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082191626</pqid></control><display><type>article</type><title>Evolution of crack-tip transformation zones in superelastic Nitinol subjected to in situ fatigue: A fracture mechanics and synchrotron X-ray microdiffraction analysis</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Robertson, S.W. ; Mehta, A. ; Pelton, A.R. ; Ritchie, R.O.</creator><creatorcontrib>Robertson, S.W. ; Mehta, A. ; Pelton, A.R. ; Ritchie, R.O.</creatorcontrib><description>The ultrahigh spatial resolution (∼1 μm 2) of synchrotron X-ray microdiffraction is combined with fracture mechanics techniques to directly measure in situ three-dimensional strains, phases and crystallographic alignment ahead of a growing fatigue crack (100 cycles in situ) in superelastic Nitinol. The results provide some surprising insights into the growth of cracks in phase-transforming material at the microscale. Specifically, despite a macroscopic superelastic strain recovery of 6–8% associated with the phase transformation, individual austenite grains experience local strains of less than 1.5%. This observation indicates that it is the localized process of the accommodation of the transformation and subsequent loading of the martensite that provide the main source of the large recoverable strains. Furthermore, the plastic region ahead of the crack is composed of deformed martensite. This micromechanical transformation process is dependent upon the material texture, and directly influences the transformation zone size/shape as well as the crack path.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2007.07.028</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Crack growth ; Crack propagation ; Exact sciences and technology ; Fatigue ; Fatigue failure ; Fracture mechanics ; Intermetallics ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Microdiffraction ; Nitinol ; Strain ; Superelasticity ; Synchrotron X-rays ; Texture ; Transformations</subject><ispartof>Acta materialia, 2007-10, Vol.55 (18), p.6198-6207</ispartof><rights>2007 Acta Materialia Inc.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-8d6778f998fdbcdbc0f07cdf694f3482c3edaecf6bdc669d4973414d13fef5f63</citedby><cites>FETCH-LOGICAL-c469t-8d6778f998fdbcdbc0f07cdf694f3482c3edaecf6bdc669d4973414d13fef5f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359645407004934$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19198864$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Robertson, S.W.</creatorcontrib><creatorcontrib>Mehta, A.</creatorcontrib><creatorcontrib>Pelton, A.R.</creatorcontrib><creatorcontrib>Ritchie, R.O.</creatorcontrib><title>Evolution of crack-tip transformation zones in superelastic Nitinol subjected to in situ fatigue: A fracture mechanics and synchrotron X-ray microdiffraction analysis</title><title>Acta materialia</title><description>The ultrahigh spatial resolution (∼1 μm 2) of synchrotron X-ray microdiffraction is combined with fracture mechanics techniques to directly measure in situ three-dimensional strains, phases and crystallographic alignment ahead of a growing fatigue crack (100 cycles in situ) in superelastic Nitinol. The results provide some surprising insights into the growth of cracks in phase-transforming material at the microscale. Specifically, despite a macroscopic superelastic strain recovery of 6–8% associated with the phase transformation, individual austenite grains experience local strains of less than 1.5%. This observation indicates that it is the localized process of the accommodation of the transformation and subsequent loading of the martensite that provide the main source of the large recoverable strains. Furthermore, the plastic region ahead of the crack is composed of deformed martensite. This micromechanical transformation process is dependent upon the material texture, and directly influences the transformation zone size/shape as well as the crack path.</description><subject>Applied sciences</subject><subject>Crack growth</subject><subject>Crack propagation</subject><subject>Exact sciences and technology</subject><subject>Fatigue</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Intermetallics</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Microdiffraction</subject><subject>Nitinol</subject><subject>Strain</subject><subject>Superelasticity</subject><subject>Synchrotron X-rays</subject><subject>Texture</subject><subject>Transformations</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkVFrFDEUhQdRsFZ_gpAXxZdZk0kmk_FFSqmtUPRFwbeQvbmxWWeSNckU1h_k7zTTXfBN4UJC8p1zSE7TvGR0wyiTb3cbA8XMpmw6SofNOp161JwxNfC2Ez1_XPe8H1spevG0eZbzjlLWDYKeNb-v7uO0FB8DiY5AMvCjLX5PSjIhu5iq63r3KwbMxAeSlz0mnEwuHsgnX3yIUz3c7hAKWlLiA-TLQlxVfl_wHbkgrtqWJSGZEe5M8JCJCZbkQ4C7FEuqAd_aZA5k9pCi9e5BsOaaYKZD9vl588SZKeOL03refP1w9eXypr39fP3x8uK2BSHH0iorh0G5cVTObqEOdXQA6-QoHBeqA47WIDi5tSDlaMU4cMGEZdyh653k583ro-8-xZ8L5qJnnwGnyQSMS9acUSoEpxV880-QUdWxkclu9eyPaH1bzgmd3ic_m3SokF4L1Dt9KlCvBep1OlV1r04RJoOZ6p8E8PmveGSjUlJU7v2Rw_ox9x6TzuAxAFqfaivaRv-fpD_Zz7mC</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Robertson, S.W.</creator><creator>Mehta, A.</creator><creator>Pelton, A.R.</creator><creator>Ritchie, R.O.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20071001</creationdate><title>Evolution of crack-tip transformation zones in superelastic Nitinol subjected to in situ fatigue: A fracture mechanics and synchrotron X-ray microdiffraction analysis</title><author>Robertson, S.W. ; Mehta, A. ; Pelton, A.R. ; Ritchie, R.O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-8d6778f998fdbcdbc0f07cdf694f3482c3edaecf6bdc669d4973414d13fef5f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Crack growth</topic><topic>Crack propagation</topic><topic>Exact sciences and technology</topic><topic>Fatigue</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Intermetallics</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Microdiffraction</topic><topic>Nitinol</topic><topic>Strain</topic><topic>Superelasticity</topic><topic>Synchrotron X-rays</topic><topic>Texture</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robertson, S.W.</creatorcontrib><creatorcontrib>Mehta, A.</creatorcontrib><creatorcontrib>Pelton, A.R.</creatorcontrib><creatorcontrib>Ritchie, R.O.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robertson, S.W.</au><au>Mehta, A.</au><au>Pelton, A.R.</au><au>Ritchie, R.O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of crack-tip transformation zones in superelastic Nitinol subjected to in situ fatigue: A fracture mechanics and synchrotron X-ray microdiffraction analysis</atitle><jtitle>Acta materialia</jtitle><date>2007-10-01</date><risdate>2007</risdate><volume>55</volume><issue>18</issue><spage>6198</spage><epage>6207</epage><pages>6198-6207</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The ultrahigh spatial resolution (∼1 μm 2) of synchrotron X-ray microdiffraction is combined with fracture mechanics techniques to directly measure in situ three-dimensional strains, phases and crystallographic alignment ahead of a growing fatigue crack (100 cycles in situ) in superelastic Nitinol. The results provide some surprising insights into the growth of cracks in phase-transforming material at the microscale. Specifically, despite a macroscopic superelastic strain recovery of 6–8% associated with the phase transformation, individual austenite grains experience local strains of less than 1.5%. This observation indicates that it is the localized process of the accommodation of the transformation and subsequent loading of the martensite that provide the main source of the large recoverable strains. Furthermore, the plastic region ahead of the crack is composed of deformed martensite. This micromechanical transformation process is dependent upon the material texture, and directly influences the transformation zone size/shape as well as the crack path.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2007.07.028</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2007-10, Vol.55 (18), p.6198-6207
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_31004430
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Crack growth
Crack propagation
Exact sciences and technology
Fatigue
Fatigue failure
Fracture mechanics
Intermetallics
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Microdiffraction
Nitinol
Strain
Superelasticity
Synchrotron X-rays
Texture
Transformations
title Evolution of crack-tip transformation zones in superelastic Nitinol subjected to in situ fatigue: A fracture mechanics and synchrotron X-ray microdiffraction analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20crack-tip%20transformation%20zones%20in%20superelastic%20Nitinol%20subjected%20to%20in%20situ%20fatigue:%20A%20fracture%20mechanics%20and%20synchrotron%20X-ray%20microdiffraction%20analysis&rft.jtitle=Acta%20materialia&rft.au=Robertson,%20S.W.&rft.date=2007-10-01&rft.volume=55&rft.issue=18&rft.spage=6198&rft.epage=6207&rft.pages=6198-6207&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2007.07.028&rft_dat=%3Cproquest_cross%3E1082191626%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082191626&rft_id=info:pmid/&rft_els_id=S1359645407004934&rfr_iscdi=true