The hyperbolic invariant tori of symplectic mappings

In this paper we study the persistence of lower dimensional hyperbolic invariant tori for nearly integrable twist symplectic mappings. Under a Rüssmann-type non-degenerate condition, by introducing a modified KAM iteration scheme, we proved that nearly integrable twist symplectic mappings admit a fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2008, Vol.68 (1), p.109-126
Hauptverfasser: Zhu, Wenzhuang, Liu, Baifeng, Liu, Zhenxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 126
container_issue 1
container_start_page 109
container_title Nonlinear analysis
container_volume 68
creator Zhu, Wenzhuang
Liu, Baifeng
Liu, Zhenxin
description In this paper we study the persistence of lower dimensional hyperbolic invariant tori for nearly integrable twist symplectic mappings. Under a Rüssmann-type non-degenerate condition, by introducing a modified KAM iteration scheme, we proved that nearly integrable twist symplectic mappings admit a family of lower dimensional hyperbolic invariant tori as long as the symplectic perturbation is small enough.
doi_str_mv 10.1016/j.na.2006.10.035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31003515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X06006778</els_id><sourcerecordid>31003515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-edf1baa23cebfdfd61179c838bc60737473fef90e79491f0af9714b9f35b69cb3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwM2aBLcGOYztmQxVfUiWWIrFZjnOmrhIn2Gml_ve4aiUmptPd_d6d3kPoluCCYMIfNoXXRYkxT22BKTtDM1ILmrOSsHM0w5SXOav41yW6inGDMSaC8hmqVmvI1vsRQjN0zmTO73Rw2k_ZNASXDTaL-37swExp2etxdP47XqMLq7sIN6c6R58vz6vFW778eH1fPC1zQxmbcmgtabQuqYHGtrblhAhpalo3hmNBRSWoBSsxCFlJYrG2UpCqkZayhkvT0Dm6P94dw_CzhTip3kUDXac9DNuoKMHJKWEJxEfQhCHGAFaNwfU67BXB6hCP2iiv1SGewySJkuTudFtHozsbtDcu_ukk4bTmPHGPRw6S0Z2DoKJx4A20LqRUVDu4_5_8Avikeb8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31003515</pqid></control><display><type>article</type><title>The hyperbolic invariant tori of symplectic mappings</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhu, Wenzhuang ; Liu, Baifeng ; Liu, Zhenxin</creator><creatorcontrib>Zhu, Wenzhuang ; Liu, Baifeng ; Liu, Zhenxin</creatorcontrib><description>In this paper we study the persistence of lower dimensional hyperbolic invariant tori for nearly integrable twist symplectic mappings. Under a Rüssmann-type non-degenerate condition, by introducing a modified KAM iteration scheme, we proved that nearly integrable twist symplectic mappings admit a family of lower dimensional hyperbolic invariant tori as long as the symplectic perturbation is small enough.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2006.10.035</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Invariant tori ; KAM theorem ; Mathematical analysis ; Mathematics ; Sciences and techniques of general use ; Symplectic mappings</subject><ispartof>Nonlinear analysis, 2008, Vol.68 (1), p.109-126</ispartof><rights>2007</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-edf1baa23cebfdfd61179c838bc60737473fef90e79491f0af9714b9f35b69cb3</citedby><cites>FETCH-LOGICAL-c355t-edf1baa23cebfdfd61179c838bc60737473fef90e79491f0af9714b9f35b69cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X06006778$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19163866$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Wenzhuang</creatorcontrib><creatorcontrib>Liu, Baifeng</creatorcontrib><creatorcontrib>Liu, Zhenxin</creatorcontrib><title>The hyperbolic invariant tori of symplectic mappings</title><title>Nonlinear analysis</title><description>In this paper we study the persistence of lower dimensional hyperbolic invariant tori for nearly integrable twist symplectic mappings. Under a Rüssmann-type non-degenerate condition, by introducing a modified KAM iteration scheme, we proved that nearly integrable twist symplectic mappings admit a family of lower dimensional hyperbolic invariant tori as long as the symplectic perturbation is small enough.</description><subject>Exact sciences and technology</subject><subject>Invariant tori</subject><subject>KAM theorem</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><subject>Symplectic mappings</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwM2aBLcGOYztmQxVfUiWWIrFZjnOmrhIn2Gml_ve4aiUmptPd_d6d3kPoluCCYMIfNoXXRYkxT22BKTtDM1ILmrOSsHM0w5SXOav41yW6inGDMSaC8hmqVmvI1vsRQjN0zmTO73Rw2k_ZNASXDTaL-37swExp2etxdP47XqMLq7sIN6c6R58vz6vFW778eH1fPC1zQxmbcmgtabQuqYHGtrblhAhpalo3hmNBRSWoBSsxCFlJYrG2UpCqkZayhkvT0Dm6P94dw_CzhTip3kUDXac9DNuoKMHJKWEJxEfQhCHGAFaNwfU67BXB6hCP2iiv1SGewySJkuTudFtHozsbtDcu_ukk4bTmPHGPRw6S0Z2DoKJx4A20LqRUVDu4_5_8Avikeb8</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Zhu, Wenzhuang</creator><creator>Liu, Baifeng</creator><creator>Liu, Zhenxin</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2008</creationdate><title>The hyperbolic invariant tori of symplectic mappings</title><author>Zhu, Wenzhuang ; Liu, Baifeng ; Liu, Zhenxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-edf1baa23cebfdfd61179c838bc60737473fef90e79491f0af9714b9f35b69cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Exact sciences and technology</topic><topic>Invariant tori</topic><topic>KAM theorem</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><topic>Symplectic mappings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Wenzhuang</creatorcontrib><creatorcontrib>Liu, Baifeng</creatorcontrib><creatorcontrib>Liu, Zhenxin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Wenzhuang</au><au>Liu, Baifeng</au><au>Liu, Zhenxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The hyperbolic invariant tori of symplectic mappings</atitle><jtitle>Nonlinear analysis</jtitle><date>2008</date><risdate>2008</risdate><volume>68</volume><issue>1</issue><spage>109</spage><epage>126</epage><pages>109-126</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>In this paper we study the persistence of lower dimensional hyperbolic invariant tori for nearly integrable twist symplectic mappings. Under a Rüssmann-type non-degenerate condition, by introducing a modified KAM iteration scheme, we proved that nearly integrable twist symplectic mappings admit a family of lower dimensional hyperbolic invariant tori as long as the symplectic perturbation is small enough.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2006.10.035</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2008, Vol.68 (1), p.109-126
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_31003515
source Elsevier ScienceDirect Journals Complete
subjects Exact sciences and technology
Invariant tori
KAM theorem
Mathematical analysis
Mathematics
Sciences and techniques of general use
Symplectic mappings
title The hyperbolic invariant tori of symplectic mappings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T16%3A54%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20hyperbolic%20invariant%20tori%20of%20symplectic%20mappings&rft.jtitle=Nonlinear%20analysis&rft.au=Zhu,%20Wenzhuang&rft.date=2008&rft.volume=68&rft.issue=1&rft.spage=109&rft.epage=126&rft.pages=109-126&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2006.10.035&rft_dat=%3Cproquest_cross%3E31003515%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31003515&rft_id=info:pmid/&rft_els_id=S0362546X06006778&rfr_iscdi=true