Emulsion‐Based Multiscale Structural Design Realizes Lightweight and Superelastic Graphene Aerogels for Electromagnetic Interference Shielding

Ultralight graphene aerogels with high electrical conductivity and superelasticity are demanded yet difficult to produce. A versatile emulsion‐based approach is demonstrate to optimize multiscale structure of lightweight, elastic, and conductive graphene aerogels. By constructing Pickering emulsion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-11, Vol.20 (48), p.e2405950-n/a
Hauptverfasser: Zhang, Yiman, Min, Peng, Yue, Guoyao, Niu, Bochao, Li, Lulu, Yu, Zhong‐Zhen, Zhang, Hao‐Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 48
container_start_page e2405950
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Zhang, Yiman
Min, Peng
Yue, Guoyao
Niu, Bochao
Li, Lulu
Yu, Zhong‐Zhen
Zhang, Hao‐Bin
description Ultralight graphene aerogels with high electrical conductivity and superelasticity are demanded yet difficult to produce. A versatile emulsion‐based approach is demonstrate to optimize multiscale structure of lightweight, elastic, and conductive graphene aerogels. By constructing Pickering emulsion using graphene oxide (GO), poly (amic acid) (PAA), and octadeyl amine (ODA), micron‐level close‐pore structure is realized while thermal shrinkage mismatch between GO and PAA creates numerous nanowrinkles during thermal annealing. GO nanosheets are bridged by PAA‐derived carbon, enhancing the structural integrity at molecular level. These multiscale structural features facilitate rapid electron transport and efficient load transfer, conferring graphene aerogels with intriguing mechanical and electromagnetic interference (EMI) shielding properties. The emulsion‐based graphene aerogel with an ultralow density of ≈3.0 mg cm−3 integrates outstanding electrical conductivity, air‐caliber thermal insulation, high EMI shielding effectiveness of 75.0 dB, and 90% strain compressibility with superb fatigue resistance. Intriguingly, thanks to the gel‐like rheological behavior of the emulsion, ultralight graphene scaffolds with programmable geometries are obtained by 3D printing. This work provides a general approach for the preparation of ultralight and superelastic graphene aerogels with excellent EMI shielding properties, showing broad application prospects in various fields. Superelastic graphene aerogels with multiscale structural tunability are fabricated by an emulsion‐based approach, followed by freeze‐drying and thermal annealing. The aerogels with ultralow density (3.0 mg cm−3) can withstand 90% of reversible compressive strain and exhibit air‐caliber thermal insulation and high electromagnetic interference shielding effectiveness of 75.0 dB in X‐band.
doi_str_mv 10.1002/smll.202405950
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3100273968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100273968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2580-2b135430a1d3581e9d95f97d73c840a6ca5adc410c9f6a5c896f7ad101c621e23</originalsourceid><addsrcrecordid>eNqFkbtOHDEUhi0UxC20lJGlNGl28WVuLgksBGkQUjapR8Y-M2vk8WzssRCpeASekSeJRwsbiYbGdvH9n4_9I3RCyZwSwk5Db-2cEZaRXORkBx3QgvJZUTHxaXumZB8dhnBPCKcsK_fQPhcsJbLqAD0v-miDGdzL0_N3GUDjm2hHE5S0gJejj2qMXlp8AcF0Dv8Eac1fCLg23Wp8gGnF0mm8jGvwYGUYjcJXXq5X4ACfgR86sAG3g8cLC2r0Qy87BxN17UbwbUo5la5aGbDauO4z2m2lDXD8uh-h35eLX-c_ZvXt1fX5WT1TLK_IjN1RnmecSKp5XlEQWuStKHXJVZURWSiZS60ySpRoC5mrShRtKTUlVBWMAuNH6NvGu_bDnwhhbPr0arBWOhhiaPj0vSUXRZXQr-_Q-yF6l6ZLFOc8Y6WgiZpvKOWHEDy0zdqbXvrHhpJmkjVTV822qxT48qqNdz3oLf5WTgLEBngwFh4_0DXLm7r-L_8HDt2j8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133342791</pqid></control><display><type>article</type><title>Emulsion‐Based Multiscale Structural Design Realizes Lightweight and Superelastic Graphene Aerogels for Electromagnetic Interference Shielding</title><source>Access via Wiley Online Library</source><creator>Zhang, Yiman ; Min, Peng ; Yue, Guoyao ; Niu, Bochao ; Li, Lulu ; Yu, Zhong‐Zhen ; Zhang, Hao‐Bin</creator><creatorcontrib>Zhang, Yiman ; Min, Peng ; Yue, Guoyao ; Niu, Bochao ; Li, Lulu ; Yu, Zhong‐Zhen ; Zhang, Hao‐Bin</creatorcontrib><description>Ultralight graphene aerogels with high electrical conductivity and superelasticity are demanded yet difficult to produce. A versatile emulsion‐based approach is demonstrate to optimize multiscale structure of lightweight, elastic, and conductive graphene aerogels. By constructing Pickering emulsion using graphene oxide (GO), poly (amic acid) (PAA), and octadeyl amine (ODA), micron‐level close‐pore structure is realized while thermal shrinkage mismatch between GO and PAA creates numerous nanowrinkles during thermal annealing. GO nanosheets are bridged by PAA‐derived carbon, enhancing the structural integrity at molecular level. These multiscale structural features facilitate rapid electron transport and efficient load transfer, conferring graphene aerogels with intriguing mechanical and electromagnetic interference (EMI) shielding properties. The emulsion‐based graphene aerogel with an ultralow density of ≈3.0 mg cm−3 integrates outstanding electrical conductivity, air‐caliber thermal insulation, high EMI shielding effectiveness of 75.0 dB, and 90% strain compressibility with superb fatigue resistance. Intriguingly, thanks to the gel‐like rheological behavior of the emulsion, ultralight graphene scaffolds with programmable geometries are obtained by 3D printing. This work provides a general approach for the preparation of ultralight and superelastic graphene aerogels with excellent EMI shielding properties, showing broad application prospects in various fields. Superelastic graphene aerogels with multiscale structural tunability are fabricated by an emulsion‐based approach, followed by freeze‐drying and thermal annealing. The aerogels with ultralow density (3.0 mg cm−3) can withstand 90% of reversible compressive strain and exhibit air‐caliber thermal insulation and high electromagnetic interference shielding effectiveness of 75.0 dB in X‐band.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202405950</identifier><identifier>PMID: 39224048</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>3D printing ; Aerogels ; Compressibility ; Design optimization ; Electrical resistivity ; Electromagnetic interference ; electromagnetic interference shielding ; Electromagnetic shielding ; Electron transport ; emulsion ; Emulsions ; Fatigue strength ; Graphene ; graphene aerogels ; Lightweight ; Load transfer ; Molecular structure ; multiscale structural tunability ; Rheological properties ; Structural design ; Structural integrity ; Superelasticity ; Thermal insulation ; Three dimensional printing ; Weight reduction</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (48), p.e2405950-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2580-2b135430a1d3581e9d95f97d73c840a6ca5adc410c9f6a5c896f7ad101c621e23</cites><orcidid>0000-0003-1156-0495 ; 0000-0001-8357-3362 ; 0000-0002-1495-7263</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202405950$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202405950$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39224048$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yiman</creatorcontrib><creatorcontrib>Min, Peng</creatorcontrib><creatorcontrib>Yue, Guoyao</creatorcontrib><creatorcontrib>Niu, Bochao</creatorcontrib><creatorcontrib>Li, Lulu</creatorcontrib><creatorcontrib>Yu, Zhong‐Zhen</creatorcontrib><creatorcontrib>Zhang, Hao‐Bin</creatorcontrib><title>Emulsion‐Based Multiscale Structural Design Realizes Lightweight and Superelastic Graphene Aerogels for Electromagnetic Interference Shielding</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Ultralight graphene aerogels with high electrical conductivity and superelasticity are demanded yet difficult to produce. A versatile emulsion‐based approach is demonstrate to optimize multiscale structure of lightweight, elastic, and conductive graphene aerogels. By constructing Pickering emulsion using graphene oxide (GO), poly (amic acid) (PAA), and octadeyl amine (ODA), micron‐level close‐pore structure is realized while thermal shrinkage mismatch between GO and PAA creates numerous nanowrinkles during thermal annealing. GO nanosheets are bridged by PAA‐derived carbon, enhancing the structural integrity at molecular level. These multiscale structural features facilitate rapid electron transport and efficient load transfer, conferring graphene aerogels with intriguing mechanical and electromagnetic interference (EMI) shielding properties. The emulsion‐based graphene aerogel with an ultralow density of ≈3.0 mg cm−3 integrates outstanding electrical conductivity, air‐caliber thermal insulation, high EMI shielding effectiveness of 75.0 dB, and 90% strain compressibility with superb fatigue resistance. Intriguingly, thanks to the gel‐like rheological behavior of the emulsion, ultralight graphene scaffolds with programmable geometries are obtained by 3D printing. This work provides a general approach for the preparation of ultralight and superelastic graphene aerogels with excellent EMI shielding properties, showing broad application prospects in various fields. Superelastic graphene aerogels with multiscale structural tunability are fabricated by an emulsion‐based approach, followed by freeze‐drying and thermal annealing. The aerogels with ultralow density (3.0 mg cm−3) can withstand 90% of reversible compressive strain and exhibit air‐caliber thermal insulation and high electromagnetic interference shielding effectiveness of 75.0 dB in X‐band.</description><subject>3D printing</subject><subject>Aerogels</subject><subject>Compressibility</subject><subject>Design optimization</subject><subject>Electrical resistivity</subject><subject>Electromagnetic interference</subject><subject>electromagnetic interference shielding</subject><subject>Electromagnetic shielding</subject><subject>Electron transport</subject><subject>emulsion</subject><subject>Emulsions</subject><subject>Fatigue strength</subject><subject>Graphene</subject><subject>graphene aerogels</subject><subject>Lightweight</subject><subject>Load transfer</subject><subject>Molecular structure</subject><subject>multiscale structural tunability</subject><subject>Rheological properties</subject><subject>Structural design</subject><subject>Structural integrity</subject><subject>Superelasticity</subject><subject>Thermal insulation</subject><subject>Three dimensional printing</subject><subject>Weight reduction</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkbtOHDEUhi0UxC20lJGlNGl28WVuLgksBGkQUjapR8Y-M2vk8WzssRCpeASekSeJRwsbiYbGdvH9n4_9I3RCyZwSwk5Db-2cEZaRXORkBx3QgvJZUTHxaXumZB8dhnBPCKcsK_fQPhcsJbLqAD0v-miDGdzL0_N3GUDjm2hHE5S0gJejj2qMXlp8AcF0Dv8Eac1fCLg23Wp8gGnF0mm8jGvwYGUYjcJXXq5X4ACfgR86sAG3g8cLC2r0Qy87BxN17UbwbUo5la5aGbDauO4z2m2lDXD8uh-h35eLX-c_ZvXt1fX5WT1TLK_IjN1RnmecSKp5XlEQWuStKHXJVZURWSiZS60ySpRoC5mrShRtKTUlVBWMAuNH6NvGu_bDnwhhbPr0arBWOhhiaPj0vSUXRZXQr-_Q-yF6l6ZLFOc8Y6WgiZpvKOWHEDy0zdqbXvrHhpJmkjVTV822qxT48qqNdz3oLf5WTgLEBngwFh4_0DXLm7r-L_8HDt2j8Q</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Zhang, Yiman</creator><creator>Min, Peng</creator><creator>Yue, Guoyao</creator><creator>Niu, Bochao</creator><creator>Li, Lulu</creator><creator>Yu, Zhong‐Zhen</creator><creator>Zhang, Hao‐Bin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1156-0495</orcidid><orcidid>https://orcid.org/0000-0001-8357-3362</orcidid><orcidid>https://orcid.org/0000-0002-1495-7263</orcidid></search><sort><creationdate>20241101</creationdate><title>Emulsion‐Based Multiscale Structural Design Realizes Lightweight and Superelastic Graphene Aerogels for Electromagnetic Interference Shielding</title><author>Zhang, Yiman ; Min, Peng ; Yue, Guoyao ; Niu, Bochao ; Li, Lulu ; Yu, Zhong‐Zhen ; Zhang, Hao‐Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2580-2b135430a1d3581e9d95f97d73c840a6ca5adc410c9f6a5c896f7ad101c621e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D printing</topic><topic>Aerogels</topic><topic>Compressibility</topic><topic>Design optimization</topic><topic>Electrical resistivity</topic><topic>Electromagnetic interference</topic><topic>electromagnetic interference shielding</topic><topic>Electromagnetic shielding</topic><topic>Electron transport</topic><topic>emulsion</topic><topic>Emulsions</topic><topic>Fatigue strength</topic><topic>Graphene</topic><topic>graphene aerogels</topic><topic>Lightweight</topic><topic>Load transfer</topic><topic>Molecular structure</topic><topic>multiscale structural tunability</topic><topic>Rheological properties</topic><topic>Structural design</topic><topic>Structural integrity</topic><topic>Superelasticity</topic><topic>Thermal insulation</topic><topic>Three dimensional printing</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yiman</creatorcontrib><creatorcontrib>Min, Peng</creatorcontrib><creatorcontrib>Yue, Guoyao</creatorcontrib><creatorcontrib>Niu, Bochao</creatorcontrib><creatorcontrib>Li, Lulu</creatorcontrib><creatorcontrib>Yu, Zhong‐Zhen</creatorcontrib><creatorcontrib>Zhang, Hao‐Bin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yiman</au><au>Min, Peng</au><au>Yue, Guoyao</au><au>Niu, Bochao</au><au>Li, Lulu</au><au>Yu, Zhong‐Zhen</au><au>Zhang, Hao‐Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emulsion‐Based Multiscale Structural Design Realizes Lightweight and Superelastic Graphene Aerogels for Electromagnetic Interference Shielding</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>20</volume><issue>48</issue><spage>e2405950</spage><epage>n/a</epage><pages>e2405950-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Ultralight graphene aerogels with high electrical conductivity and superelasticity are demanded yet difficult to produce. A versatile emulsion‐based approach is demonstrate to optimize multiscale structure of lightweight, elastic, and conductive graphene aerogels. By constructing Pickering emulsion using graphene oxide (GO), poly (amic acid) (PAA), and octadeyl amine (ODA), micron‐level close‐pore structure is realized while thermal shrinkage mismatch between GO and PAA creates numerous nanowrinkles during thermal annealing. GO nanosheets are bridged by PAA‐derived carbon, enhancing the structural integrity at molecular level. These multiscale structural features facilitate rapid electron transport and efficient load transfer, conferring graphene aerogels with intriguing mechanical and electromagnetic interference (EMI) shielding properties. The emulsion‐based graphene aerogel with an ultralow density of ≈3.0 mg cm−3 integrates outstanding electrical conductivity, air‐caliber thermal insulation, high EMI shielding effectiveness of 75.0 dB, and 90% strain compressibility with superb fatigue resistance. Intriguingly, thanks to the gel‐like rheological behavior of the emulsion, ultralight graphene scaffolds with programmable geometries are obtained by 3D printing. This work provides a general approach for the preparation of ultralight and superelastic graphene aerogels with excellent EMI shielding properties, showing broad application prospects in various fields. Superelastic graphene aerogels with multiscale structural tunability are fabricated by an emulsion‐based approach, followed by freeze‐drying and thermal annealing. The aerogels with ultralow density (3.0 mg cm−3) can withstand 90% of reversible compressive strain and exhibit air‐caliber thermal insulation and high electromagnetic interference shielding effectiveness of 75.0 dB in X‐band.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39224048</pmid><doi>10.1002/smll.202405950</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1156-0495</orcidid><orcidid>https://orcid.org/0000-0001-8357-3362</orcidid><orcidid>https://orcid.org/0000-0002-1495-7263</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (48), p.e2405950-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3100273968
source Access via Wiley Online Library
subjects 3D printing
Aerogels
Compressibility
Design optimization
Electrical resistivity
Electromagnetic interference
electromagnetic interference shielding
Electromagnetic shielding
Electron transport
emulsion
Emulsions
Fatigue strength
Graphene
graphene aerogels
Lightweight
Load transfer
Molecular structure
multiscale structural tunability
Rheological properties
Structural design
Structural integrity
Superelasticity
Thermal insulation
Three dimensional printing
Weight reduction
title Emulsion‐Based Multiscale Structural Design Realizes Lightweight and Superelastic Graphene Aerogels for Electromagnetic Interference Shielding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emulsion%E2%80%90Based%20Multiscale%20Structural%20Design%20Realizes%20Lightweight%20and%20Superelastic%20Graphene%20Aerogels%20for%20Electromagnetic%20Interference%20Shielding&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhang,%20Yiman&rft.date=2024-11-01&rft.volume=20&rft.issue=48&rft.spage=e2405950&rft.epage=n/a&rft.pages=e2405950-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202405950&rft_dat=%3Cproquest_cross%3E3100273968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133342791&rft_id=info:pmid/39224048&rfr_iscdi=true