Efficient and Stable Red Perovskite Light‐Emitting Diodes via Thermodynamic Crystallization Control
Efficient and stable red perovskite light‐emitting diodes (PeLEDs) demonstrate promising potential in high‐definition displays and biomedical applications. Although significant progress has been made in device performance, meeting commercial demands remains a challenge in the aspects of long‐term st...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-11, Vol.36 (44), p.e2410255-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 44 |
container_start_page | e2410255 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Feng, Shi‐Chi Shen, Yang Hu, Xin‐Mei Su, Zhen‐Huang Zhang, Kai Wang, Bing‐Feng Cao, Long‐Xue Xie, Feng‐Ming Li, Hao‐Ze Gao, Xingyu Tang, Jian‐Xin Li, Yan‐Qing |
description | Efficient and stable red perovskite light‐emitting diodes (PeLEDs) demonstrate promising potential in high‐definition displays and biomedical applications. Although significant progress has been made in device performance, meeting commercial demands remains a challenge in the aspects of long‐term stability and high external quantum efficiency (EQE). Here, an in situ crystallization regulation strategy is developed for optimizing red perovskite films through ingenious vapor design. Mixed vapor containing dimethyl sulfoxide and carbon disulfide (CS2) is incorporated to conventional annealing, which contributes to thermodynamics dominated perovskite crystallization for well‐aligned cascade phase arrangement. Additionally, the perovskite surface defect density is minimized by the CS2 molecule adsorption. Consequently, the target perovskite films exhibit smooth exciton energy transfer, reduced defect density, and blocked ion migration pathways. Leveraging these advantages, spectrally stable red PeLEDs are obtained featuring emission at 668, 656, and 648 nm, which yield record peak EQEs of 30.08%, 32.14%, and 29.04%, along with prolonged half‐lifetimes of 47.7, 60.0, and 43.7 h at the initial luminances of 140, 250, and 270 cd m−2, respectively. This work provides a universal strategy for optimizing perovskite crystallization and represents a significant stride toward the commercialization of red PeLEDs.
A multifunctional crystallization control strategy by ingenious vapor design is developed for preparing high‐quality perovskite films. The target perovskite films exhibit efficient energy transfer and minimized charge loss. Consequently, a series of red perovskite light‐emitting diodes with record peak external quantum efficiency over 32%, along with remarkable half‐lifetime are obtained. |
doi_str_mv | 10.1002/adma.202410255 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3100273177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100273177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2585-1bf7a223f880125d9b3090fabe2859527db2a7e29dc134805a21c04bb0706d823</originalsourceid><addsrcrecordid>eNqFkcFO3DAURS1UVKa02y4rS2y6yfD8HE_i5WiYFqRBVC1dR078AqZJDLaHarrqJ_Qb-RIyGqBSN129zXlHV_cy9l7AVADgsbG9mSJgLgCV2mMToVBkOWj1ik1AS5XpWV4esDcx3gCAnsHsNTuQGlFqCRNGy7Z1jaMhcTNY_i2ZuiP-lSz_QsHfxx8uEV-5q-v08PvPsncpueGKnzhvKfJ7Z_jlNYXe281getfwRdjEZLrO_TLJ-YEv_JCC796y_dZ0kd493UP2_dPycnGarS4-ny3mq6xBVapM1G1hxmRtWYJAZXUtQUNrasJSaYWFrdEUhNo2QuYlKIOigbyuoYCZLVEeso87723wd2uKqepdbKjrzEB-HSu57ayQoihG9Ogf9MavwzCmGylEDUoijNR0RzXBxxiorW6D603YVAKqrazaDlC9DDA-fHjSruue7Av-3PgI6B3w03W0-Y-ump-cz__KHwFCR5Id</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122905320</pqid></control><display><type>article</type><title>Efficient and Stable Red Perovskite Light‐Emitting Diodes via Thermodynamic Crystallization Control</title><source>Wiley Online Library All Journals</source><creator>Feng, Shi‐Chi ; Shen, Yang ; Hu, Xin‐Mei ; Su, Zhen‐Huang ; Zhang, Kai ; Wang, Bing‐Feng ; Cao, Long‐Xue ; Xie, Feng‐Ming ; Li, Hao‐Ze ; Gao, Xingyu ; Tang, Jian‐Xin ; Li, Yan‐Qing</creator><creatorcontrib>Feng, Shi‐Chi ; Shen, Yang ; Hu, Xin‐Mei ; Su, Zhen‐Huang ; Zhang, Kai ; Wang, Bing‐Feng ; Cao, Long‐Xue ; Xie, Feng‐Ming ; Li, Hao‐Ze ; Gao, Xingyu ; Tang, Jian‐Xin ; Li, Yan‐Qing</creatorcontrib><description>Efficient and stable red perovskite light‐emitting diodes (PeLEDs) demonstrate promising potential in high‐definition displays and biomedical applications. Although significant progress has been made in device performance, meeting commercial demands remains a challenge in the aspects of long‐term stability and high external quantum efficiency (EQE). Here, an in situ crystallization regulation strategy is developed for optimizing red perovskite films through ingenious vapor design. Mixed vapor containing dimethyl sulfoxide and carbon disulfide (CS2) is incorporated to conventional annealing, which contributes to thermodynamics dominated perovskite crystallization for well‐aligned cascade phase arrangement. Additionally, the perovskite surface defect density is minimized by the CS2 molecule adsorption. Consequently, the target perovskite films exhibit smooth exciton energy transfer, reduced defect density, and blocked ion migration pathways. Leveraging these advantages, spectrally stable red PeLEDs are obtained featuring emission at 668, 656, and 648 nm, which yield record peak EQEs of 30.08%, 32.14%, and 29.04%, along with prolonged half‐lifetimes of 47.7, 60.0, and 43.7 h at the initial luminances of 140, 250, and 270 cd m−2, respectively. This work provides a universal strategy for optimizing perovskite crystallization and represents a significant stride toward the commercialization of red PeLEDs.
A multifunctional crystallization control strategy by ingenious vapor design is developed for preparing high‐quality perovskite films. The target perovskite films exhibit efficient energy transfer and minimized charge loss. Consequently, a series of red perovskite light‐emitting diodes with record peak external quantum efficiency over 32%, along with remarkable half‐lifetime are obtained.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202410255</identifier><identifier>PMID: 39223930</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biomedical materials ; Carbon disulfide ; Commercialization ; Crystal defects ; Crystallization ; Defect annealing ; defect passivation ; Density ; Design optimization ; Dimethyl sulfoxide ; Energy transfer ; Excitons ; Ion migration ; Light emitting diodes ; Perovskites ; phase rearrangement ; Quantum efficiency ; red quasi‐2D perovskites ; Surface defects ; Thermodynamics ; thermodynamics control ; vapor‐assisted crystallization</subject><ispartof>Advanced materials (Weinheim), 2024-11, Vol.36 (44), p.e2410255-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2585-1bf7a223f880125d9b3090fabe2859527db2a7e29dc134805a21c04bb0706d823</cites><orcidid>0000-0002-6813-0448</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202410255$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202410255$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39223930$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Shi‐Chi</creatorcontrib><creatorcontrib>Shen, Yang</creatorcontrib><creatorcontrib>Hu, Xin‐Mei</creatorcontrib><creatorcontrib>Su, Zhen‐Huang</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Wang, Bing‐Feng</creatorcontrib><creatorcontrib>Cao, Long‐Xue</creatorcontrib><creatorcontrib>Xie, Feng‐Ming</creatorcontrib><creatorcontrib>Li, Hao‐Ze</creatorcontrib><creatorcontrib>Gao, Xingyu</creatorcontrib><creatorcontrib>Tang, Jian‐Xin</creatorcontrib><creatorcontrib>Li, Yan‐Qing</creatorcontrib><title>Efficient and Stable Red Perovskite Light‐Emitting Diodes via Thermodynamic Crystallization Control</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Efficient and stable red perovskite light‐emitting diodes (PeLEDs) demonstrate promising potential in high‐definition displays and biomedical applications. Although significant progress has been made in device performance, meeting commercial demands remains a challenge in the aspects of long‐term stability and high external quantum efficiency (EQE). Here, an in situ crystallization regulation strategy is developed for optimizing red perovskite films through ingenious vapor design. Mixed vapor containing dimethyl sulfoxide and carbon disulfide (CS2) is incorporated to conventional annealing, which contributes to thermodynamics dominated perovskite crystallization for well‐aligned cascade phase arrangement. Additionally, the perovskite surface defect density is minimized by the CS2 molecule adsorption. Consequently, the target perovskite films exhibit smooth exciton energy transfer, reduced defect density, and blocked ion migration pathways. Leveraging these advantages, spectrally stable red PeLEDs are obtained featuring emission at 668, 656, and 648 nm, which yield record peak EQEs of 30.08%, 32.14%, and 29.04%, along with prolonged half‐lifetimes of 47.7, 60.0, and 43.7 h at the initial luminances of 140, 250, and 270 cd m−2, respectively. This work provides a universal strategy for optimizing perovskite crystallization and represents a significant stride toward the commercialization of red PeLEDs.
A multifunctional crystallization control strategy by ingenious vapor design is developed for preparing high‐quality perovskite films. The target perovskite films exhibit efficient energy transfer and minimized charge loss. Consequently, a series of red perovskite light‐emitting diodes with record peak external quantum efficiency over 32%, along with remarkable half‐lifetime are obtained.</description><subject>Biomedical materials</subject><subject>Carbon disulfide</subject><subject>Commercialization</subject><subject>Crystal defects</subject><subject>Crystallization</subject><subject>Defect annealing</subject><subject>defect passivation</subject><subject>Density</subject><subject>Design optimization</subject><subject>Dimethyl sulfoxide</subject><subject>Energy transfer</subject><subject>Excitons</subject><subject>Ion migration</subject><subject>Light emitting diodes</subject><subject>Perovskites</subject><subject>phase rearrangement</subject><subject>Quantum efficiency</subject><subject>red quasi‐2D perovskites</subject><subject>Surface defects</subject><subject>Thermodynamics</subject><subject>thermodynamics control</subject><subject>vapor‐assisted crystallization</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkcFO3DAURS1UVKa02y4rS2y6yfD8HE_i5WiYFqRBVC1dR078AqZJDLaHarrqJ_Qb-RIyGqBSN129zXlHV_cy9l7AVADgsbG9mSJgLgCV2mMToVBkOWj1ik1AS5XpWV4esDcx3gCAnsHsNTuQGlFqCRNGy7Z1jaMhcTNY_i2ZuiP-lSz_QsHfxx8uEV-5q-v08PvPsncpueGKnzhvKfJ7Z_jlNYXe281getfwRdjEZLrO_TLJ-YEv_JCC796y_dZ0kd493UP2_dPycnGarS4-ny3mq6xBVapM1G1hxmRtWYJAZXUtQUNrasJSaYWFrdEUhNo2QuYlKIOigbyuoYCZLVEeso87723wd2uKqepdbKjrzEB-HSu57ayQoihG9Ogf9MavwzCmGylEDUoijNR0RzXBxxiorW6D603YVAKqrazaDlC9DDA-fHjSruue7Av-3PgI6B3w03W0-Y-ump-cz__KHwFCR5Id</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Feng, Shi‐Chi</creator><creator>Shen, Yang</creator><creator>Hu, Xin‐Mei</creator><creator>Su, Zhen‐Huang</creator><creator>Zhang, Kai</creator><creator>Wang, Bing‐Feng</creator><creator>Cao, Long‐Xue</creator><creator>Xie, Feng‐Ming</creator><creator>Li, Hao‐Ze</creator><creator>Gao, Xingyu</creator><creator>Tang, Jian‐Xin</creator><creator>Li, Yan‐Qing</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6813-0448</orcidid></search><sort><creationdate>20241101</creationdate><title>Efficient and Stable Red Perovskite Light‐Emitting Diodes via Thermodynamic Crystallization Control</title><author>Feng, Shi‐Chi ; Shen, Yang ; Hu, Xin‐Mei ; Su, Zhen‐Huang ; Zhang, Kai ; Wang, Bing‐Feng ; Cao, Long‐Xue ; Xie, Feng‐Ming ; Li, Hao‐Ze ; Gao, Xingyu ; Tang, Jian‐Xin ; Li, Yan‐Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2585-1bf7a223f880125d9b3090fabe2859527db2a7e29dc134805a21c04bb0706d823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomedical materials</topic><topic>Carbon disulfide</topic><topic>Commercialization</topic><topic>Crystal defects</topic><topic>Crystallization</topic><topic>Defect annealing</topic><topic>defect passivation</topic><topic>Density</topic><topic>Design optimization</topic><topic>Dimethyl sulfoxide</topic><topic>Energy transfer</topic><topic>Excitons</topic><topic>Ion migration</topic><topic>Light emitting diodes</topic><topic>Perovskites</topic><topic>phase rearrangement</topic><topic>Quantum efficiency</topic><topic>red quasi‐2D perovskites</topic><topic>Surface defects</topic><topic>Thermodynamics</topic><topic>thermodynamics control</topic><topic>vapor‐assisted crystallization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Shi‐Chi</creatorcontrib><creatorcontrib>Shen, Yang</creatorcontrib><creatorcontrib>Hu, Xin‐Mei</creatorcontrib><creatorcontrib>Su, Zhen‐Huang</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Wang, Bing‐Feng</creatorcontrib><creatorcontrib>Cao, Long‐Xue</creatorcontrib><creatorcontrib>Xie, Feng‐Ming</creatorcontrib><creatorcontrib>Li, Hao‐Ze</creatorcontrib><creatorcontrib>Gao, Xingyu</creatorcontrib><creatorcontrib>Tang, Jian‐Xin</creatorcontrib><creatorcontrib>Li, Yan‐Qing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Shi‐Chi</au><au>Shen, Yang</au><au>Hu, Xin‐Mei</au><au>Su, Zhen‐Huang</au><au>Zhang, Kai</au><au>Wang, Bing‐Feng</au><au>Cao, Long‐Xue</au><au>Xie, Feng‐Ming</au><au>Li, Hao‐Ze</au><au>Gao, Xingyu</au><au>Tang, Jian‐Xin</au><au>Li, Yan‐Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient and Stable Red Perovskite Light‐Emitting Diodes via Thermodynamic Crystallization Control</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>36</volume><issue>44</issue><spage>e2410255</spage><epage>n/a</epage><pages>e2410255-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Efficient and stable red perovskite light‐emitting diodes (PeLEDs) demonstrate promising potential in high‐definition displays and biomedical applications. Although significant progress has been made in device performance, meeting commercial demands remains a challenge in the aspects of long‐term stability and high external quantum efficiency (EQE). Here, an in situ crystallization regulation strategy is developed for optimizing red perovskite films through ingenious vapor design. Mixed vapor containing dimethyl sulfoxide and carbon disulfide (CS2) is incorporated to conventional annealing, which contributes to thermodynamics dominated perovskite crystallization for well‐aligned cascade phase arrangement. Additionally, the perovskite surface defect density is minimized by the CS2 molecule adsorption. Consequently, the target perovskite films exhibit smooth exciton energy transfer, reduced defect density, and blocked ion migration pathways. Leveraging these advantages, spectrally stable red PeLEDs are obtained featuring emission at 668, 656, and 648 nm, which yield record peak EQEs of 30.08%, 32.14%, and 29.04%, along with prolonged half‐lifetimes of 47.7, 60.0, and 43.7 h at the initial luminances of 140, 250, and 270 cd m−2, respectively. This work provides a universal strategy for optimizing perovskite crystallization and represents a significant stride toward the commercialization of red PeLEDs.
A multifunctional crystallization control strategy by ingenious vapor design is developed for preparing high‐quality perovskite films. The target perovskite films exhibit efficient energy transfer and minimized charge loss. Consequently, a series of red perovskite light‐emitting diodes with record peak external quantum efficiency over 32%, along with remarkable half‐lifetime are obtained.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39223930</pmid><doi>10.1002/adma.202410255</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6813-0448</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-11, Vol.36 (44), p.e2410255-n/a |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_3100273177 |
source | Wiley Online Library All Journals |
subjects | Biomedical materials Carbon disulfide Commercialization Crystal defects Crystallization Defect annealing defect passivation Density Design optimization Dimethyl sulfoxide Energy transfer Excitons Ion migration Light emitting diodes Perovskites phase rearrangement Quantum efficiency red quasi‐2D perovskites Surface defects Thermodynamics thermodynamics control vapor‐assisted crystallization |
title | Efficient and Stable Red Perovskite Light‐Emitting Diodes via Thermodynamic Crystallization Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A15%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20and%20Stable%20Red%20Perovskite%20Light%E2%80%90Emitting%20Diodes%20via%20Thermodynamic%20Crystallization%20Control&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Feng,%20Shi%E2%80%90Chi&rft.date=2024-11-01&rft.volume=36&rft.issue=44&rft.spage=e2410255&rft.epage=n/a&rft.pages=e2410255-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202410255&rft_dat=%3Cproquest_cross%3E3100273177%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3122905320&rft_id=info:pmid/39223930&rfr_iscdi=true |