Efficient and Stable Red Perovskite Light‐Emitting Diodes via Thermodynamic Crystallization Control

Efficient and stable red perovskite light‐emitting diodes (PeLEDs) demonstrate promising potential in high‐definition displays and biomedical applications. Although significant progress has been made in device performance, meeting commercial demands remains a challenge in the aspects of long‐term st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-11, Vol.36 (44), p.e2410255-n/a
Hauptverfasser: Feng, Shi‐Chi, Shen, Yang, Hu, Xin‐Mei, Su, Zhen‐Huang, Zhang, Kai, Wang, Bing‐Feng, Cao, Long‐Xue, Xie, Feng‐Ming, Li, Hao‐Ze, Gao, Xingyu, Tang, Jian‐Xin, Li, Yan‐Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 44
container_start_page e2410255
container_title Advanced materials (Weinheim)
container_volume 36
creator Feng, Shi‐Chi
Shen, Yang
Hu, Xin‐Mei
Su, Zhen‐Huang
Zhang, Kai
Wang, Bing‐Feng
Cao, Long‐Xue
Xie, Feng‐Ming
Li, Hao‐Ze
Gao, Xingyu
Tang, Jian‐Xin
Li, Yan‐Qing
description Efficient and stable red perovskite light‐emitting diodes (PeLEDs) demonstrate promising potential in high‐definition displays and biomedical applications. Although significant progress has been made in device performance, meeting commercial demands remains a challenge in the aspects of long‐term stability and high external quantum efficiency (EQE). Here, an in situ crystallization regulation strategy is developed for optimizing red perovskite films through ingenious vapor design. Mixed vapor containing dimethyl sulfoxide and carbon disulfide (CS2) is incorporated to conventional annealing, which contributes to thermodynamics dominated perovskite crystallization for well‐aligned cascade phase arrangement. Additionally, the perovskite surface defect density is minimized by the CS2 molecule adsorption. Consequently, the target perovskite films exhibit smooth exciton energy transfer, reduced defect density, and blocked ion migration pathways. Leveraging these advantages, spectrally stable red PeLEDs are obtained featuring emission at 668, 656, and 648 nm, which yield record peak EQEs of 30.08%, 32.14%, and 29.04%, along with prolonged half‐lifetimes of 47.7, 60.0, and 43.7 h at the initial luminances of 140, 250, and 270 cd m−2, respectively. This work provides a universal strategy for optimizing perovskite crystallization and represents a significant stride toward the commercialization of red PeLEDs. A multifunctional crystallization control strategy by ingenious vapor design is developed for preparing high‐quality perovskite films. The target perovskite films exhibit efficient energy transfer and minimized charge loss. Consequently, a series of red perovskite light‐emitting diodes with record peak external quantum efficiency over 32%, along with remarkable half‐lifetime are obtained.
doi_str_mv 10.1002/adma.202410255
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3100273177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100273177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2585-1bf7a223f880125d9b3090fabe2859527db2a7e29dc134805a21c04bb0706d823</originalsourceid><addsrcrecordid>eNqFkcFO3DAURS1UVKa02y4rS2y6yfD8HE_i5WiYFqRBVC1dR078AqZJDLaHarrqJ_Qb-RIyGqBSN129zXlHV_cy9l7AVADgsbG9mSJgLgCV2mMToVBkOWj1ik1AS5XpWV4esDcx3gCAnsHsNTuQGlFqCRNGy7Z1jaMhcTNY_i2ZuiP-lSz_QsHfxx8uEV-5q-v08PvPsncpueGKnzhvKfJ7Z_jlNYXe281getfwRdjEZLrO_TLJ-YEv_JCC796y_dZ0kd493UP2_dPycnGarS4-ny3mq6xBVapM1G1hxmRtWYJAZXUtQUNrasJSaYWFrdEUhNo2QuYlKIOigbyuoYCZLVEeso87723wd2uKqepdbKjrzEB-HSu57ayQoihG9Ogf9MavwzCmGylEDUoijNR0RzXBxxiorW6D603YVAKqrazaDlC9DDA-fHjSruue7Av-3PgI6B3w03W0-Y-ump-cz__KHwFCR5Id</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122905320</pqid></control><display><type>article</type><title>Efficient and Stable Red Perovskite Light‐Emitting Diodes via Thermodynamic Crystallization Control</title><source>Wiley Online Library All Journals</source><creator>Feng, Shi‐Chi ; Shen, Yang ; Hu, Xin‐Mei ; Su, Zhen‐Huang ; Zhang, Kai ; Wang, Bing‐Feng ; Cao, Long‐Xue ; Xie, Feng‐Ming ; Li, Hao‐Ze ; Gao, Xingyu ; Tang, Jian‐Xin ; Li, Yan‐Qing</creator><creatorcontrib>Feng, Shi‐Chi ; Shen, Yang ; Hu, Xin‐Mei ; Su, Zhen‐Huang ; Zhang, Kai ; Wang, Bing‐Feng ; Cao, Long‐Xue ; Xie, Feng‐Ming ; Li, Hao‐Ze ; Gao, Xingyu ; Tang, Jian‐Xin ; Li, Yan‐Qing</creatorcontrib><description>Efficient and stable red perovskite light‐emitting diodes (PeLEDs) demonstrate promising potential in high‐definition displays and biomedical applications. Although significant progress has been made in device performance, meeting commercial demands remains a challenge in the aspects of long‐term stability and high external quantum efficiency (EQE). Here, an in situ crystallization regulation strategy is developed for optimizing red perovskite films through ingenious vapor design. Mixed vapor containing dimethyl sulfoxide and carbon disulfide (CS2) is incorporated to conventional annealing, which contributes to thermodynamics dominated perovskite crystallization for well‐aligned cascade phase arrangement. Additionally, the perovskite surface defect density is minimized by the CS2 molecule adsorption. Consequently, the target perovskite films exhibit smooth exciton energy transfer, reduced defect density, and blocked ion migration pathways. Leveraging these advantages, spectrally stable red PeLEDs are obtained featuring emission at 668, 656, and 648 nm, which yield record peak EQEs of 30.08%, 32.14%, and 29.04%, along with prolonged half‐lifetimes of 47.7, 60.0, and 43.7 h at the initial luminances of 140, 250, and 270 cd m−2, respectively. This work provides a universal strategy for optimizing perovskite crystallization and represents a significant stride toward the commercialization of red PeLEDs. A multifunctional crystallization control strategy by ingenious vapor design is developed for preparing high‐quality perovskite films. The target perovskite films exhibit efficient energy transfer and minimized charge loss. Consequently, a series of red perovskite light‐emitting diodes with record peak external quantum efficiency over 32%, along with remarkable half‐lifetime are obtained.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202410255</identifier><identifier>PMID: 39223930</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biomedical materials ; Carbon disulfide ; Commercialization ; Crystal defects ; Crystallization ; Defect annealing ; defect passivation ; Density ; Design optimization ; Dimethyl sulfoxide ; Energy transfer ; Excitons ; Ion migration ; Light emitting diodes ; Perovskites ; phase rearrangement ; Quantum efficiency ; red quasi‐2D perovskites ; Surface defects ; Thermodynamics ; thermodynamics control ; vapor‐assisted crystallization</subject><ispartof>Advanced materials (Weinheim), 2024-11, Vol.36 (44), p.e2410255-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2585-1bf7a223f880125d9b3090fabe2859527db2a7e29dc134805a21c04bb0706d823</cites><orcidid>0000-0002-6813-0448</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202410255$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202410255$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39223930$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Shi‐Chi</creatorcontrib><creatorcontrib>Shen, Yang</creatorcontrib><creatorcontrib>Hu, Xin‐Mei</creatorcontrib><creatorcontrib>Su, Zhen‐Huang</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Wang, Bing‐Feng</creatorcontrib><creatorcontrib>Cao, Long‐Xue</creatorcontrib><creatorcontrib>Xie, Feng‐Ming</creatorcontrib><creatorcontrib>Li, Hao‐Ze</creatorcontrib><creatorcontrib>Gao, Xingyu</creatorcontrib><creatorcontrib>Tang, Jian‐Xin</creatorcontrib><creatorcontrib>Li, Yan‐Qing</creatorcontrib><title>Efficient and Stable Red Perovskite Light‐Emitting Diodes via Thermodynamic Crystallization Control</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Efficient and stable red perovskite light‐emitting diodes (PeLEDs) demonstrate promising potential in high‐definition displays and biomedical applications. Although significant progress has been made in device performance, meeting commercial demands remains a challenge in the aspects of long‐term stability and high external quantum efficiency (EQE). Here, an in situ crystallization regulation strategy is developed for optimizing red perovskite films through ingenious vapor design. Mixed vapor containing dimethyl sulfoxide and carbon disulfide (CS2) is incorporated to conventional annealing, which contributes to thermodynamics dominated perovskite crystallization for well‐aligned cascade phase arrangement. Additionally, the perovskite surface defect density is minimized by the CS2 molecule adsorption. Consequently, the target perovskite films exhibit smooth exciton energy transfer, reduced defect density, and blocked ion migration pathways. Leveraging these advantages, spectrally stable red PeLEDs are obtained featuring emission at 668, 656, and 648 nm, which yield record peak EQEs of 30.08%, 32.14%, and 29.04%, along with prolonged half‐lifetimes of 47.7, 60.0, and 43.7 h at the initial luminances of 140, 250, and 270 cd m−2, respectively. This work provides a universal strategy for optimizing perovskite crystallization and represents a significant stride toward the commercialization of red PeLEDs. A multifunctional crystallization control strategy by ingenious vapor design is developed for preparing high‐quality perovskite films. The target perovskite films exhibit efficient energy transfer and minimized charge loss. Consequently, a series of red perovskite light‐emitting diodes with record peak external quantum efficiency over 32%, along with remarkable half‐lifetime are obtained.</description><subject>Biomedical materials</subject><subject>Carbon disulfide</subject><subject>Commercialization</subject><subject>Crystal defects</subject><subject>Crystallization</subject><subject>Defect annealing</subject><subject>defect passivation</subject><subject>Density</subject><subject>Design optimization</subject><subject>Dimethyl sulfoxide</subject><subject>Energy transfer</subject><subject>Excitons</subject><subject>Ion migration</subject><subject>Light emitting diodes</subject><subject>Perovskites</subject><subject>phase rearrangement</subject><subject>Quantum efficiency</subject><subject>red quasi‐2D perovskites</subject><subject>Surface defects</subject><subject>Thermodynamics</subject><subject>thermodynamics control</subject><subject>vapor‐assisted crystallization</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkcFO3DAURS1UVKa02y4rS2y6yfD8HE_i5WiYFqRBVC1dR078AqZJDLaHarrqJ_Qb-RIyGqBSN129zXlHV_cy9l7AVADgsbG9mSJgLgCV2mMToVBkOWj1ik1AS5XpWV4esDcx3gCAnsHsNTuQGlFqCRNGy7Z1jaMhcTNY_i2ZuiP-lSz_QsHfxx8uEV-5q-v08PvPsncpueGKnzhvKfJ7Z_jlNYXe281getfwRdjEZLrO_TLJ-YEv_JCC796y_dZ0kd493UP2_dPycnGarS4-ny3mq6xBVapM1G1hxmRtWYJAZXUtQUNrasJSaYWFrdEUhNo2QuYlKIOigbyuoYCZLVEeso87723wd2uKqepdbKjrzEB-HSu57ayQoihG9Ogf9MavwzCmGylEDUoijNR0RzXBxxiorW6D603YVAKqrazaDlC9DDA-fHjSruue7Av-3PgI6B3w03W0-Y-ump-cz__KHwFCR5Id</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Feng, Shi‐Chi</creator><creator>Shen, Yang</creator><creator>Hu, Xin‐Mei</creator><creator>Su, Zhen‐Huang</creator><creator>Zhang, Kai</creator><creator>Wang, Bing‐Feng</creator><creator>Cao, Long‐Xue</creator><creator>Xie, Feng‐Ming</creator><creator>Li, Hao‐Ze</creator><creator>Gao, Xingyu</creator><creator>Tang, Jian‐Xin</creator><creator>Li, Yan‐Qing</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6813-0448</orcidid></search><sort><creationdate>20241101</creationdate><title>Efficient and Stable Red Perovskite Light‐Emitting Diodes via Thermodynamic Crystallization Control</title><author>Feng, Shi‐Chi ; Shen, Yang ; Hu, Xin‐Mei ; Su, Zhen‐Huang ; Zhang, Kai ; Wang, Bing‐Feng ; Cao, Long‐Xue ; Xie, Feng‐Ming ; Li, Hao‐Ze ; Gao, Xingyu ; Tang, Jian‐Xin ; Li, Yan‐Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2585-1bf7a223f880125d9b3090fabe2859527db2a7e29dc134805a21c04bb0706d823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomedical materials</topic><topic>Carbon disulfide</topic><topic>Commercialization</topic><topic>Crystal defects</topic><topic>Crystallization</topic><topic>Defect annealing</topic><topic>defect passivation</topic><topic>Density</topic><topic>Design optimization</topic><topic>Dimethyl sulfoxide</topic><topic>Energy transfer</topic><topic>Excitons</topic><topic>Ion migration</topic><topic>Light emitting diodes</topic><topic>Perovskites</topic><topic>phase rearrangement</topic><topic>Quantum efficiency</topic><topic>red quasi‐2D perovskites</topic><topic>Surface defects</topic><topic>Thermodynamics</topic><topic>thermodynamics control</topic><topic>vapor‐assisted crystallization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Shi‐Chi</creatorcontrib><creatorcontrib>Shen, Yang</creatorcontrib><creatorcontrib>Hu, Xin‐Mei</creatorcontrib><creatorcontrib>Su, Zhen‐Huang</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Wang, Bing‐Feng</creatorcontrib><creatorcontrib>Cao, Long‐Xue</creatorcontrib><creatorcontrib>Xie, Feng‐Ming</creatorcontrib><creatorcontrib>Li, Hao‐Ze</creatorcontrib><creatorcontrib>Gao, Xingyu</creatorcontrib><creatorcontrib>Tang, Jian‐Xin</creatorcontrib><creatorcontrib>Li, Yan‐Qing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Shi‐Chi</au><au>Shen, Yang</au><au>Hu, Xin‐Mei</au><au>Su, Zhen‐Huang</au><au>Zhang, Kai</au><au>Wang, Bing‐Feng</au><au>Cao, Long‐Xue</au><au>Xie, Feng‐Ming</au><au>Li, Hao‐Ze</au><au>Gao, Xingyu</au><au>Tang, Jian‐Xin</au><au>Li, Yan‐Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient and Stable Red Perovskite Light‐Emitting Diodes via Thermodynamic Crystallization Control</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>36</volume><issue>44</issue><spage>e2410255</spage><epage>n/a</epage><pages>e2410255-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Efficient and stable red perovskite light‐emitting diodes (PeLEDs) demonstrate promising potential in high‐definition displays and biomedical applications. Although significant progress has been made in device performance, meeting commercial demands remains a challenge in the aspects of long‐term stability and high external quantum efficiency (EQE). Here, an in situ crystallization regulation strategy is developed for optimizing red perovskite films through ingenious vapor design. Mixed vapor containing dimethyl sulfoxide and carbon disulfide (CS2) is incorporated to conventional annealing, which contributes to thermodynamics dominated perovskite crystallization for well‐aligned cascade phase arrangement. Additionally, the perovskite surface defect density is minimized by the CS2 molecule adsorption. Consequently, the target perovskite films exhibit smooth exciton energy transfer, reduced defect density, and blocked ion migration pathways. Leveraging these advantages, spectrally stable red PeLEDs are obtained featuring emission at 668, 656, and 648 nm, which yield record peak EQEs of 30.08%, 32.14%, and 29.04%, along with prolonged half‐lifetimes of 47.7, 60.0, and 43.7 h at the initial luminances of 140, 250, and 270 cd m−2, respectively. This work provides a universal strategy for optimizing perovskite crystallization and represents a significant stride toward the commercialization of red PeLEDs. A multifunctional crystallization control strategy by ingenious vapor design is developed for preparing high‐quality perovskite films. The target perovskite films exhibit efficient energy transfer and minimized charge loss. Consequently, a series of red perovskite light‐emitting diodes with record peak external quantum efficiency over 32%, along with remarkable half‐lifetime are obtained.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39223930</pmid><doi>10.1002/adma.202410255</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6813-0448</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-11, Vol.36 (44), p.e2410255-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3100273177
source Wiley Online Library All Journals
subjects Biomedical materials
Carbon disulfide
Commercialization
Crystal defects
Crystallization
Defect annealing
defect passivation
Density
Design optimization
Dimethyl sulfoxide
Energy transfer
Excitons
Ion migration
Light emitting diodes
Perovskites
phase rearrangement
Quantum efficiency
red quasi‐2D perovskites
Surface defects
Thermodynamics
thermodynamics control
vapor‐assisted crystallization
title Efficient and Stable Red Perovskite Light‐Emitting Diodes via Thermodynamic Crystallization Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A15%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20and%20Stable%20Red%20Perovskite%20Light%E2%80%90Emitting%20Diodes%20via%20Thermodynamic%20Crystallization%20Control&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Feng,%20Shi%E2%80%90Chi&rft.date=2024-11-01&rft.volume=36&rft.issue=44&rft.spage=e2410255&rft.epage=n/a&rft.pages=e2410255-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202410255&rft_dat=%3Cproquest_cross%3E3100273177%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3122905320&rft_id=info:pmid/39223930&rfr_iscdi=true