The Effect of Organic Semiconductor Electron Affinity on Preventing Parasitic Oxidation Reactions Limiting Performance of n‐Type Organic Electrochemical Transistors

A key challenge in the development of organic mixed ionic‐electronic conducting materials (OMIEC) for high performance electrochemical transistors is their stable performance in ambient. When operating in aqueous electrolyte, potential reactions of the electrochemically injected electrons with air a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-11, Vol.36 (44), p.e2403911-n/a
Hauptverfasser: Alsufyani, Maryam, Moss, Benjamin, Tait, Claudia E., Myers, William K., Shahi, Maryam, Stewart, Katherine, Zhao, Xiaolei, Rashid, Reem B., Meli, Dilara, Wu, Ruiheng, Paulsen, Bryan D., Thorley, Karl, Lin, Yuanbao, Combe, Craig, Kniebe‐Evans, Charlie, Inal, Sahika, Jeong, Sang Young, Woo, Han Young, Ritchie, Grant, Kim, Ji‐Seon, Rivnay, Jonathan, Paterson, Alexandra, Durrant, James R, McCulloch, Iain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 44
container_start_page e2403911
container_title Advanced materials (Weinheim)
container_volume 36
creator Alsufyani, Maryam
Moss, Benjamin
Tait, Claudia E.
Myers, William K.
Shahi, Maryam
Stewart, Katherine
Zhao, Xiaolei
Rashid, Reem B.
Meli, Dilara
Wu, Ruiheng
Paulsen, Bryan D.
Thorley, Karl
Lin, Yuanbao
Combe, Craig
Kniebe‐Evans, Charlie
Inal, Sahika
Jeong, Sang Young
Woo, Han Young
Ritchie, Grant
Kim, Ji‐Seon
Rivnay, Jonathan
Paterson, Alexandra
Durrant, James R
McCulloch, Iain
description A key challenge in the development of organic mixed ionic‐electronic conducting materials (OMIEC) for high performance electrochemical transistors is their stable performance in ambient. When operating in aqueous electrolyte, potential reactions of the electrochemically injected electrons with air and water could hinder their persistence, leading to a reduction in charge transport. Here, the impact of deepening the LUMO energy level of a series of electron‐transporting semiconducting polymers is evaluated, and subsequently rendering the most common oxidation processes of electron polarons thermodynamically unfavorable, on organic electrochemical transistors (OECTs) performance. Employing time resolved spectroelectrochemistry with three analogous polymers having varying electron affinities (EA), it is found that an EA below the thermodynamic threshold for oxidation of its electron polarons by oxygen significantly improves electron transport and lifetime in air. A polymer with a sufficiently large EA and subsequent thermodynamically unfavorable oxidation of electron polarons is reported, which is used as the semiconducting layer in an OECT, in its neutral and N‐DMBI doped form, resulting in an excellent and air‐stable OECT performance. These results show a general design methodology to avoid detrimental parasitic reactions under ambient conditions, and the benefits that arise in electrical performance. N‐type electrochemical transistors generally exhibit lower performance than their p‐type analogs. The origins of the lower charge carrier mobility in electron‐transporting organic semiconducting polymers are explored and observed that parasitic reactions involving ambient oxygen are a contributing factor. It is shown that a molecular design strategy to increase the polymer electron affinity successfully eliminates these reactions.
doi_str_mv 10.1002/adma.202403911
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3099858420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3122904825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2981-93df1b3c76848035440291d3e233f7597d4eeb3efbb1e107e63666835208fec43</originalsourceid><addsrcrecordid>eNqFkc-O0zAQxi0EYsvClSOyxIVLyvhP0vhYLYVdqauuoJwjxxnvepU4xU6A3ngEnmIfjCfBUUuRuHCakeY33zeaj5CXDOYMgL_VTafnHLgEoRh7RGYs5yyToPLHZAZK5JkqZHlGnsV4DwCqgOIpOROKc5YLNSMP2zukK2vRDLS3dBNutXeGfsLOmd43oxn6QFdtGofe06W1zrthT1N_E_Ar-sH5W3qjg45uSHub767Rg0vjj6jN1ES6dp07YBhsHzrtDU5e_tePn9v9Dk-mRxtzN5nrlm6D9tHFdEF8Tp5Y3UZ8cazn5PP71fbiMltvPlxdLNeZ4apkmRKNZbUwi6KUJYhcSuCKNQK5EHaRq0UjEWuBtq4ZMlhgIYqiKEXOoUwvkOKcvDno7kL_ZcQ4VJ2LBttWe-zHWAlQqsxLySGhr_9B7_sx-HRdJRjnCmTJ80TND5QJfYwBbbULrtNhXzGopgSrKcHqlGBaeHWUHesOmxP-J7IEqAPwzbW4_49ctXx3vfwr_huid6qd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122904825</pqid></control><display><type>article</type><title>The Effect of Organic Semiconductor Electron Affinity on Preventing Parasitic Oxidation Reactions Limiting Performance of n‐Type Organic Electrochemical Transistors</title><source>Wiley Online Library Journals</source><creator>Alsufyani, Maryam ; Moss, Benjamin ; Tait, Claudia E. ; Myers, William K. ; Shahi, Maryam ; Stewart, Katherine ; Zhao, Xiaolei ; Rashid, Reem B. ; Meli, Dilara ; Wu, Ruiheng ; Paulsen, Bryan D. ; Thorley, Karl ; Lin, Yuanbao ; Combe, Craig ; Kniebe‐Evans, Charlie ; Inal, Sahika ; Jeong, Sang Young ; Woo, Han Young ; Ritchie, Grant ; Kim, Ji‐Seon ; Rivnay, Jonathan ; Paterson, Alexandra ; Durrant, James R ; McCulloch, Iain</creator><creatorcontrib>Alsufyani, Maryam ; Moss, Benjamin ; Tait, Claudia E. ; Myers, William K. ; Shahi, Maryam ; Stewart, Katherine ; Zhao, Xiaolei ; Rashid, Reem B. ; Meli, Dilara ; Wu, Ruiheng ; Paulsen, Bryan D. ; Thorley, Karl ; Lin, Yuanbao ; Combe, Craig ; Kniebe‐Evans, Charlie ; Inal, Sahika ; Jeong, Sang Young ; Woo, Han Young ; Ritchie, Grant ; Kim, Ji‐Seon ; Rivnay, Jonathan ; Paterson, Alexandra ; Durrant, James R ; McCulloch, Iain</creatorcontrib><description>A key challenge in the development of organic mixed ionic‐electronic conducting materials (OMIEC) for high performance electrochemical transistors is their stable performance in ambient. When operating in aqueous electrolyte, potential reactions of the electrochemically injected electrons with air and water could hinder their persistence, leading to a reduction in charge transport. Here, the impact of deepening the LUMO energy level of a series of electron‐transporting semiconducting polymers is evaluated, and subsequently rendering the most common oxidation processes of electron polarons thermodynamically unfavorable, on organic electrochemical transistors (OECTs) performance. Employing time resolved spectroelectrochemistry with three analogous polymers having varying electron affinities (EA), it is found that an EA below the thermodynamic threshold for oxidation of its electron polarons by oxygen significantly improves electron transport and lifetime in air. A polymer with a sufficiently large EA and subsequent thermodynamically unfavorable oxidation of electron polarons is reported, which is used as the semiconducting layer in an OECT, in its neutral and N‐DMBI doped form, resulting in an excellent and air‐stable OECT performance. These results show a general design methodology to avoid detrimental parasitic reactions under ambient conditions, and the benefits that arise in electrical performance. N‐type electrochemical transistors generally exhibit lower performance than their p‐type analogs. The origins of the lower charge carrier mobility in electron‐transporting organic semiconducting polymers are explored and observed that parasitic reactions involving ambient oxygen are a contributing factor. It is shown that a molecular design strategy to increase the polymer electron affinity successfully eliminates these reactions.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202403911</identifier><identifier>PMID: 39221539</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Affinity ; Aqueous electrolytes ; Charge transport ; Chemical reactions ; Electron affinity ; Electron transport ; Energy levels ; in situ electrochemical resonant Raman spectroscopy ; organic electrochemical transistors ; Oxidation ; Polarons ; Polymers ; semiconducting polymers ; time‐resolved spectroelectrochemistry ; Transistors</subject><ispartof>Advanced materials (Weinheim), 2024-11, Vol.36 (44), p.e2403911-n/a</ispartof><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2981-93df1b3c76848035440291d3e233f7597d4eeb3efbb1e107e63666835208fec43</cites><orcidid>0000-0003-4097-7900 ; 0000-0002-6340-7217 ; 0000-0001-7601-1433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202403911$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202403911$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39221539$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alsufyani, Maryam</creatorcontrib><creatorcontrib>Moss, Benjamin</creatorcontrib><creatorcontrib>Tait, Claudia E.</creatorcontrib><creatorcontrib>Myers, William K.</creatorcontrib><creatorcontrib>Shahi, Maryam</creatorcontrib><creatorcontrib>Stewart, Katherine</creatorcontrib><creatorcontrib>Zhao, Xiaolei</creatorcontrib><creatorcontrib>Rashid, Reem B.</creatorcontrib><creatorcontrib>Meli, Dilara</creatorcontrib><creatorcontrib>Wu, Ruiheng</creatorcontrib><creatorcontrib>Paulsen, Bryan D.</creatorcontrib><creatorcontrib>Thorley, Karl</creatorcontrib><creatorcontrib>Lin, Yuanbao</creatorcontrib><creatorcontrib>Combe, Craig</creatorcontrib><creatorcontrib>Kniebe‐Evans, Charlie</creatorcontrib><creatorcontrib>Inal, Sahika</creatorcontrib><creatorcontrib>Jeong, Sang Young</creatorcontrib><creatorcontrib>Woo, Han Young</creatorcontrib><creatorcontrib>Ritchie, Grant</creatorcontrib><creatorcontrib>Kim, Ji‐Seon</creatorcontrib><creatorcontrib>Rivnay, Jonathan</creatorcontrib><creatorcontrib>Paterson, Alexandra</creatorcontrib><creatorcontrib>Durrant, James R</creatorcontrib><creatorcontrib>McCulloch, Iain</creatorcontrib><title>The Effect of Organic Semiconductor Electron Affinity on Preventing Parasitic Oxidation Reactions Limiting Performance of n‐Type Organic Electrochemical Transistors</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>A key challenge in the development of organic mixed ionic‐electronic conducting materials (OMIEC) for high performance electrochemical transistors is their stable performance in ambient. When operating in aqueous electrolyte, potential reactions of the electrochemically injected electrons with air and water could hinder their persistence, leading to a reduction in charge transport. Here, the impact of deepening the LUMO energy level of a series of electron‐transporting semiconducting polymers is evaluated, and subsequently rendering the most common oxidation processes of electron polarons thermodynamically unfavorable, on organic electrochemical transistors (OECTs) performance. Employing time resolved spectroelectrochemistry with three analogous polymers having varying electron affinities (EA), it is found that an EA below the thermodynamic threshold for oxidation of its electron polarons by oxygen significantly improves electron transport and lifetime in air. A polymer with a sufficiently large EA and subsequent thermodynamically unfavorable oxidation of electron polarons is reported, which is used as the semiconducting layer in an OECT, in its neutral and N‐DMBI doped form, resulting in an excellent and air‐stable OECT performance. These results show a general design methodology to avoid detrimental parasitic reactions under ambient conditions, and the benefits that arise in electrical performance. N‐type electrochemical transistors generally exhibit lower performance than their p‐type analogs. The origins of the lower charge carrier mobility in electron‐transporting organic semiconducting polymers are explored and observed that parasitic reactions involving ambient oxygen are a contributing factor. It is shown that a molecular design strategy to increase the polymer electron affinity successfully eliminates these reactions.</description><subject>Affinity</subject><subject>Aqueous electrolytes</subject><subject>Charge transport</subject><subject>Chemical reactions</subject><subject>Electron affinity</subject><subject>Electron transport</subject><subject>Energy levels</subject><subject>in situ electrochemical resonant Raman spectroscopy</subject><subject>organic electrochemical transistors</subject><subject>Oxidation</subject><subject>Polarons</subject><subject>Polymers</subject><subject>semiconducting polymers</subject><subject>time‐resolved spectroelectrochemistry</subject><subject>Transistors</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkc-O0zAQxi0EYsvClSOyxIVLyvhP0vhYLYVdqauuoJwjxxnvepU4xU6A3ngEnmIfjCfBUUuRuHCakeY33zeaj5CXDOYMgL_VTafnHLgEoRh7RGYs5yyToPLHZAZK5JkqZHlGnsV4DwCqgOIpOROKc5YLNSMP2zukK2vRDLS3dBNutXeGfsLOmd43oxn6QFdtGofe06W1zrthT1N_E_Ar-sH5W3qjg45uSHub767Rg0vjj6jN1ES6dp07YBhsHzrtDU5e_tePn9v9Dk-mRxtzN5nrlm6D9tHFdEF8Tp5Y3UZ8cazn5PP71fbiMltvPlxdLNeZ4apkmRKNZbUwi6KUJYhcSuCKNQK5EHaRq0UjEWuBtq4ZMlhgIYqiKEXOoUwvkOKcvDno7kL_ZcQ4VJ2LBttWe-zHWAlQqsxLySGhr_9B7_sx-HRdJRjnCmTJ80TND5QJfYwBbbULrtNhXzGopgSrKcHqlGBaeHWUHesOmxP-J7IEqAPwzbW4_49ctXx3vfwr_huid6qd</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Alsufyani, Maryam</creator><creator>Moss, Benjamin</creator><creator>Tait, Claudia E.</creator><creator>Myers, William K.</creator><creator>Shahi, Maryam</creator><creator>Stewart, Katherine</creator><creator>Zhao, Xiaolei</creator><creator>Rashid, Reem B.</creator><creator>Meli, Dilara</creator><creator>Wu, Ruiheng</creator><creator>Paulsen, Bryan D.</creator><creator>Thorley, Karl</creator><creator>Lin, Yuanbao</creator><creator>Combe, Craig</creator><creator>Kniebe‐Evans, Charlie</creator><creator>Inal, Sahika</creator><creator>Jeong, Sang Young</creator><creator>Woo, Han Young</creator><creator>Ritchie, Grant</creator><creator>Kim, Ji‐Seon</creator><creator>Rivnay, Jonathan</creator><creator>Paterson, Alexandra</creator><creator>Durrant, James R</creator><creator>McCulloch, Iain</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4097-7900</orcidid><orcidid>https://orcid.org/0000-0002-6340-7217</orcidid><orcidid>https://orcid.org/0000-0001-7601-1433</orcidid></search><sort><creationdate>20241101</creationdate><title>The Effect of Organic Semiconductor Electron Affinity on Preventing Parasitic Oxidation Reactions Limiting Performance of n‐Type Organic Electrochemical Transistors</title><author>Alsufyani, Maryam ; Moss, Benjamin ; Tait, Claudia E. ; Myers, William K. ; Shahi, Maryam ; Stewart, Katherine ; Zhao, Xiaolei ; Rashid, Reem B. ; Meli, Dilara ; Wu, Ruiheng ; Paulsen, Bryan D. ; Thorley, Karl ; Lin, Yuanbao ; Combe, Craig ; Kniebe‐Evans, Charlie ; Inal, Sahika ; Jeong, Sang Young ; Woo, Han Young ; Ritchie, Grant ; Kim, Ji‐Seon ; Rivnay, Jonathan ; Paterson, Alexandra ; Durrant, James R ; McCulloch, Iain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2981-93df1b3c76848035440291d3e233f7597d4eeb3efbb1e107e63666835208fec43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Affinity</topic><topic>Aqueous electrolytes</topic><topic>Charge transport</topic><topic>Chemical reactions</topic><topic>Electron affinity</topic><topic>Electron transport</topic><topic>Energy levels</topic><topic>in situ electrochemical resonant Raman spectroscopy</topic><topic>organic electrochemical transistors</topic><topic>Oxidation</topic><topic>Polarons</topic><topic>Polymers</topic><topic>semiconducting polymers</topic><topic>time‐resolved spectroelectrochemistry</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alsufyani, Maryam</creatorcontrib><creatorcontrib>Moss, Benjamin</creatorcontrib><creatorcontrib>Tait, Claudia E.</creatorcontrib><creatorcontrib>Myers, William K.</creatorcontrib><creatorcontrib>Shahi, Maryam</creatorcontrib><creatorcontrib>Stewart, Katherine</creatorcontrib><creatorcontrib>Zhao, Xiaolei</creatorcontrib><creatorcontrib>Rashid, Reem B.</creatorcontrib><creatorcontrib>Meli, Dilara</creatorcontrib><creatorcontrib>Wu, Ruiheng</creatorcontrib><creatorcontrib>Paulsen, Bryan D.</creatorcontrib><creatorcontrib>Thorley, Karl</creatorcontrib><creatorcontrib>Lin, Yuanbao</creatorcontrib><creatorcontrib>Combe, Craig</creatorcontrib><creatorcontrib>Kniebe‐Evans, Charlie</creatorcontrib><creatorcontrib>Inal, Sahika</creatorcontrib><creatorcontrib>Jeong, Sang Young</creatorcontrib><creatorcontrib>Woo, Han Young</creatorcontrib><creatorcontrib>Ritchie, Grant</creatorcontrib><creatorcontrib>Kim, Ji‐Seon</creatorcontrib><creatorcontrib>Rivnay, Jonathan</creatorcontrib><creatorcontrib>Paterson, Alexandra</creatorcontrib><creatorcontrib>Durrant, James R</creatorcontrib><creatorcontrib>McCulloch, Iain</creatorcontrib><collection>Wiley Open Access Journals</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alsufyani, Maryam</au><au>Moss, Benjamin</au><au>Tait, Claudia E.</au><au>Myers, William K.</au><au>Shahi, Maryam</au><au>Stewart, Katherine</au><au>Zhao, Xiaolei</au><au>Rashid, Reem B.</au><au>Meli, Dilara</au><au>Wu, Ruiheng</au><au>Paulsen, Bryan D.</au><au>Thorley, Karl</au><au>Lin, Yuanbao</au><au>Combe, Craig</au><au>Kniebe‐Evans, Charlie</au><au>Inal, Sahika</au><au>Jeong, Sang Young</au><au>Woo, Han Young</au><au>Ritchie, Grant</au><au>Kim, Ji‐Seon</au><au>Rivnay, Jonathan</au><au>Paterson, Alexandra</au><au>Durrant, James R</au><au>McCulloch, Iain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of Organic Semiconductor Electron Affinity on Preventing Parasitic Oxidation Reactions Limiting Performance of n‐Type Organic Electrochemical Transistors</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>36</volume><issue>44</issue><spage>e2403911</spage><epage>n/a</epage><pages>e2403911-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>A key challenge in the development of organic mixed ionic‐electronic conducting materials (OMIEC) for high performance electrochemical transistors is their stable performance in ambient. When operating in aqueous electrolyte, potential reactions of the electrochemically injected electrons with air and water could hinder their persistence, leading to a reduction in charge transport. Here, the impact of deepening the LUMO energy level of a series of electron‐transporting semiconducting polymers is evaluated, and subsequently rendering the most common oxidation processes of electron polarons thermodynamically unfavorable, on organic electrochemical transistors (OECTs) performance. Employing time resolved spectroelectrochemistry with three analogous polymers having varying electron affinities (EA), it is found that an EA below the thermodynamic threshold for oxidation of its electron polarons by oxygen significantly improves electron transport and lifetime in air. A polymer with a sufficiently large EA and subsequent thermodynamically unfavorable oxidation of electron polarons is reported, which is used as the semiconducting layer in an OECT, in its neutral and N‐DMBI doped form, resulting in an excellent and air‐stable OECT performance. These results show a general design methodology to avoid detrimental parasitic reactions under ambient conditions, and the benefits that arise in electrical performance. N‐type electrochemical transistors generally exhibit lower performance than their p‐type analogs. The origins of the lower charge carrier mobility in electron‐transporting organic semiconducting polymers are explored and observed that parasitic reactions involving ambient oxygen are a contributing factor. It is shown that a molecular design strategy to increase the polymer electron affinity successfully eliminates these reactions.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39221539</pmid><doi>10.1002/adma.202403911</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4097-7900</orcidid><orcidid>https://orcid.org/0000-0002-6340-7217</orcidid><orcidid>https://orcid.org/0000-0001-7601-1433</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-11, Vol.36 (44), p.e2403911-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3099858420
source Wiley Online Library Journals
subjects Affinity
Aqueous electrolytes
Charge transport
Chemical reactions
Electron affinity
Electron transport
Energy levels
in situ electrochemical resonant Raman spectroscopy
organic electrochemical transistors
Oxidation
Polarons
Polymers
semiconducting polymers
time‐resolved spectroelectrochemistry
Transistors
title The Effect of Organic Semiconductor Electron Affinity on Preventing Parasitic Oxidation Reactions Limiting Performance of n‐Type Organic Electrochemical Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A07%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20Organic%20Semiconductor%20Electron%20Affinity%20on%20Preventing%20Parasitic%20Oxidation%20Reactions%20Limiting%20Performance%20of%20n%E2%80%90Type%20Organic%20Electrochemical%20Transistors&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Alsufyani,%20Maryam&rft.date=2024-11-01&rft.volume=36&rft.issue=44&rft.spage=e2403911&rft.epage=n/a&rft.pages=e2403911-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202403911&rft_dat=%3Cproquest_cross%3E3122904825%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3122904825&rft_id=info:pmid/39221539&rfr_iscdi=true