Entropy‐Driven Reversible Melting and Recrystallization of Layered Hybrid Perovskites
Typical layered 2D A2PbX4 (A: organic ammonium cation, X: Br, I) perovskites undergo irreversible decomposition at high temperatures. Can they be designed to melt at lower temperatures without decomposition? Which thermodynamic parameter drive the melting of layered perovskites? These questions are...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-11, Vol.20 (48), p.e2406735-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 48 |
container_start_page | e2406735 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Rajput, Parikshit Kumar Salunkhe, Parashurama Sarma, Manmayuri Basu, Meghasree Gopal, Animesh Joshi, Aprajita Shingote, Ajinkya Sundarnath Saha, Surajit Rahman, Atikur Nag, Angshuman |
description | Typical layered 2D A2PbX4 (A: organic ammonium cation, X: Br, I) perovskites undergo irreversible decomposition at high temperatures. Can they be designed to melt at lower temperatures without decomposition? Which thermodynamic parameter drive the melting of layered perovskites? These questions are addressed by considering the melt of A2PbX4 as a mixture of ions (like ionic liquids), and hypothesized that the increase in the structural entropy of fusion (ΔSfus) will be the driving force to decrease their melting temperature. Then to increase structural ΔSfus, A‐site cations are designed that are rigid in the solid crystal, and become flexible in the molten state. Different tail groups in the A‐site cations form hydrogen‐, halogen‐ and even covalent bonding‐interactions, making the cation‐layer rigid in the solid form. Additionally, the rotation of ─NH3+ head group is suppressed by replacing ─H with ─CH3, further enhancing the rigidity. Six A2PbX4 crystals with high ΔSfus and low melting temperatures are prepared using this approach. For example, [I−(CH2)3−NH2(CH3)]2PbI4 reversibly melts at 388 K (decomposition temperature 500 K), and then recrystallizes back upon cooling. Consequently, melt‐pressed films are grown demonstrating the solvent‐ and vacuum‐free perovskite films for future optoelectronic devices.
This work reveals a structure‐property relationship where the structural entropy of fusion (ΔSfus) drives the melting of A2PbX4 layered perovskites. Non‐covalent interactions and steric hindrances rigidify the A‐site organic layer in solid state, and their removal in molten state yields high ΔSfus and low melting temperature. The stable melt enables solvent‐ and vacuum‐free melt‐pressed films for optoelectronic devices. |
doi_str_mv | 10.1002/smll.202406735 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3099857632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133342971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2585-baef0bf45f611725ae340835e665e00c55bdfd0a1ab0e211860e134e0b9384063</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoVqtXj7LgxUvrJNnsx1FqtcIWxQ88huzurKSmuzXZVtaTP8Hf6C9xS2sFL0JgwvDMy8xDyBGFPgVgZ25qTJ8B8yEIudgiezSgvBdELN7e_Cl0yL5zEwBOmR_ukg6PGW1fuEeehmVtq1nz9fF5YfUCS-8OF2idTg16YzS1Lp89VeZtO7ONq5Ux-l3Vuiq9qvAS1aDF3Bs1qdW5d4u2WrgXXaM7IDuFMg4P17VLHi-HD4NRL7m5uh6cJ72MiUj0UoUFpIUvioDSkAmF3IeICwwCgQCZEGle5KCoSgEZpVEASLmPkMY8am_mXXK6yp3Z6nWOrpZT7TI0RpVYzZ3kEMeRCAPOWvTkDzqp5rZst5Occs59Foe0pforKrOVcxYLObN6qmwjKcilcrlULjfK24Hjdew8nWK-wX8ct0C8At60weafOHk_TpLf8G-C5I5n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133342971</pqid></control><display><type>article</type><title>Entropy‐Driven Reversible Melting and Recrystallization of Layered Hybrid Perovskites</title><source>Wiley Online Library All Journals</source><creator>Rajput, Parikshit Kumar ; Salunkhe, Parashurama ; Sarma, Manmayuri ; Basu, Meghasree ; Gopal, Animesh ; Joshi, Aprajita ; Shingote, Ajinkya Sundarnath ; Saha, Surajit ; Rahman, Atikur ; Nag, Angshuman</creator><creatorcontrib>Rajput, Parikshit Kumar ; Salunkhe, Parashurama ; Sarma, Manmayuri ; Basu, Meghasree ; Gopal, Animesh ; Joshi, Aprajita ; Shingote, Ajinkya Sundarnath ; Saha, Surajit ; Rahman, Atikur ; Nag, Angshuman</creatorcontrib><description>Typical layered 2D A2PbX4 (A: organic ammonium cation, X: Br, I) perovskites undergo irreversible decomposition at high temperatures. Can they be designed to melt at lower temperatures without decomposition? Which thermodynamic parameter drive the melting of layered perovskites? These questions are addressed by considering the melt of A2PbX4 as a mixture of ions (like ionic liquids), and hypothesized that the increase in the structural entropy of fusion (ΔSfus) will be the driving force to decrease their melting temperature. Then to increase structural ΔSfus, A‐site cations are designed that are rigid in the solid crystal, and become flexible in the molten state. Different tail groups in the A‐site cations form hydrogen‐, halogen‐ and even covalent bonding‐interactions, making the cation‐layer rigid in the solid form. Additionally, the rotation of ─NH3+ head group is suppressed by replacing ─H with ─CH3, further enhancing the rigidity. Six A2PbX4 crystals with high ΔSfus and low melting temperatures are prepared using this approach. For example, [I−(CH2)3−NH2(CH3)]2PbI4 reversibly melts at 388 K (decomposition temperature 500 K), and then recrystallizes back upon cooling. Consequently, melt‐pressed films are grown demonstrating the solvent‐ and vacuum‐free perovskite films for future optoelectronic devices.
This work reveals a structure‐property relationship where the structural entropy of fusion (ΔSfus) drives the melting of A2PbX4 layered perovskites. Non‐covalent interactions and steric hindrances rigidify the A‐site organic layer in solid state, and their removal in molten state yields high ΔSfus and low melting temperature. The stable melt enables solvent‐ and vacuum‐free melt‐pressed films for optoelectronic devices.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202406735</identifier><identifier>PMID: 39219217</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Ammonia ; Cations ; Decomposition ; Entropy ; High temperature ; hybrid perovskites ; Ionic liquids ; Melt temperature ; Melting ; Optoelectronic devices ; Perovskites ; photodetector ; Recrystallization ; reversible melting ; solvent‐ and vacuum‐free films ; structural entropy of fusion</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (48), p.e2406735-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2585-baef0bf45f611725ae340835e665e00c55bdfd0a1ab0e211860e134e0b9384063</cites><orcidid>0000-0003-2308-334X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202406735$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202406735$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39219217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rajput, Parikshit Kumar</creatorcontrib><creatorcontrib>Salunkhe, Parashurama</creatorcontrib><creatorcontrib>Sarma, Manmayuri</creatorcontrib><creatorcontrib>Basu, Meghasree</creatorcontrib><creatorcontrib>Gopal, Animesh</creatorcontrib><creatorcontrib>Joshi, Aprajita</creatorcontrib><creatorcontrib>Shingote, Ajinkya Sundarnath</creatorcontrib><creatorcontrib>Saha, Surajit</creatorcontrib><creatorcontrib>Rahman, Atikur</creatorcontrib><creatorcontrib>Nag, Angshuman</creatorcontrib><title>Entropy‐Driven Reversible Melting and Recrystallization of Layered Hybrid Perovskites</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Typical layered 2D A2PbX4 (A: organic ammonium cation, X: Br, I) perovskites undergo irreversible decomposition at high temperatures. Can they be designed to melt at lower temperatures without decomposition? Which thermodynamic parameter drive the melting of layered perovskites? These questions are addressed by considering the melt of A2PbX4 as a mixture of ions (like ionic liquids), and hypothesized that the increase in the structural entropy of fusion (ΔSfus) will be the driving force to decrease their melting temperature. Then to increase structural ΔSfus, A‐site cations are designed that are rigid in the solid crystal, and become flexible in the molten state. Different tail groups in the A‐site cations form hydrogen‐, halogen‐ and even covalent bonding‐interactions, making the cation‐layer rigid in the solid form. Additionally, the rotation of ─NH3+ head group is suppressed by replacing ─H with ─CH3, further enhancing the rigidity. Six A2PbX4 crystals with high ΔSfus and low melting temperatures are prepared using this approach. For example, [I−(CH2)3−NH2(CH3)]2PbI4 reversibly melts at 388 K (decomposition temperature 500 K), and then recrystallizes back upon cooling. Consequently, melt‐pressed films are grown demonstrating the solvent‐ and vacuum‐free perovskite films for future optoelectronic devices.
This work reveals a structure‐property relationship where the structural entropy of fusion (ΔSfus) drives the melting of A2PbX4 layered perovskites. Non‐covalent interactions and steric hindrances rigidify the A‐site organic layer in solid state, and their removal in molten state yields high ΔSfus and low melting temperature. The stable melt enables solvent‐ and vacuum‐free melt‐pressed films for optoelectronic devices.</description><subject>Ammonia</subject><subject>Cations</subject><subject>Decomposition</subject><subject>Entropy</subject><subject>High temperature</subject><subject>hybrid perovskites</subject><subject>Ionic liquids</subject><subject>Melt temperature</subject><subject>Melting</subject><subject>Optoelectronic devices</subject><subject>Perovskites</subject><subject>photodetector</subject><subject>Recrystallization</subject><subject>reversible melting</subject><subject>solvent‐ and vacuum‐free films</subject><subject>structural entropy of fusion</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoVqtXj7LgxUvrJNnsx1FqtcIWxQ88huzurKSmuzXZVtaTP8Hf6C9xS2sFL0JgwvDMy8xDyBGFPgVgZ25qTJ8B8yEIudgiezSgvBdELN7e_Cl0yL5zEwBOmR_ukg6PGW1fuEeehmVtq1nz9fF5YfUCS-8OF2idTg16YzS1Lp89VeZtO7ONq5Ux-l3Vuiq9qvAS1aDF3Bs1qdW5d4u2WrgXXaM7IDuFMg4P17VLHi-HD4NRL7m5uh6cJ72MiUj0UoUFpIUvioDSkAmF3IeICwwCgQCZEGle5KCoSgEZpVEASLmPkMY8am_mXXK6yp3Z6nWOrpZT7TI0RpVYzZ3kEMeRCAPOWvTkDzqp5rZst5Occs59Foe0pforKrOVcxYLObN6qmwjKcilcrlULjfK24Hjdew8nWK-wX8ct0C8At60weafOHk_TpLf8G-C5I5n</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Rajput, Parikshit Kumar</creator><creator>Salunkhe, Parashurama</creator><creator>Sarma, Manmayuri</creator><creator>Basu, Meghasree</creator><creator>Gopal, Animesh</creator><creator>Joshi, Aprajita</creator><creator>Shingote, Ajinkya Sundarnath</creator><creator>Saha, Surajit</creator><creator>Rahman, Atikur</creator><creator>Nag, Angshuman</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2308-334X</orcidid></search><sort><creationdate>20241101</creationdate><title>Entropy‐Driven Reversible Melting and Recrystallization of Layered Hybrid Perovskites</title><author>Rajput, Parikshit Kumar ; Salunkhe, Parashurama ; Sarma, Manmayuri ; Basu, Meghasree ; Gopal, Animesh ; Joshi, Aprajita ; Shingote, Ajinkya Sundarnath ; Saha, Surajit ; Rahman, Atikur ; Nag, Angshuman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2585-baef0bf45f611725ae340835e665e00c55bdfd0a1ab0e211860e134e0b9384063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ammonia</topic><topic>Cations</topic><topic>Decomposition</topic><topic>Entropy</topic><topic>High temperature</topic><topic>hybrid perovskites</topic><topic>Ionic liquids</topic><topic>Melt temperature</topic><topic>Melting</topic><topic>Optoelectronic devices</topic><topic>Perovskites</topic><topic>photodetector</topic><topic>Recrystallization</topic><topic>reversible melting</topic><topic>solvent‐ and vacuum‐free films</topic><topic>structural entropy of fusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajput, Parikshit Kumar</creatorcontrib><creatorcontrib>Salunkhe, Parashurama</creatorcontrib><creatorcontrib>Sarma, Manmayuri</creatorcontrib><creatorcontrib>Basu, Meghasree</creatorcontrib><creatorcontrib>Gopal, Animesh</creatorcontrib><creatorcontrib>Joshi, Aprajita</creatorcontrib><creatorcontrib>Shingote, Ajinkya Sundarnath</creatorcontrib><creatorcontrib>Saha, Surajit</creatorcontrib><creatorcontrib>Rahman, Atikur</creatorcontrib><creatorcontrib>Nag, Angshuman</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajput, Parikshit Kumar</au><au>Salunkhe, Parashurama</au><au>Sarma, Manmayuri</au><au>Basu, Meghasree</au><au>Gopal, Animesh</au><au>Joshi, Aprajita</au><au>Shingote, Ajinkya Sundarnath</au><au>Saha, Surajit</au><au>Rahman, Atikur</au><au>Nag, Angshuman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy‐Driven Reversible Melting and Recrystallization of Layered Hybrid Perovskites</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>20</volume><issue>48</issue><spage>e2406735</spage><epage>n/a</epage><pages>e2406735-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Typical layered 2D A2PbX4 (A: organic ammonium cation, X: Br, I) perovskites undergo irreversible decomposition at high temperatures. Can they be designed to melt at lower temperatures without decomposition? Which thermodynamic parameter drive the melting of layered perovskites? These questions are addressed by considering the melt of A2PbX4 as a mixture of ions (like ionic liquids), and hypothesized that the increase in the structural entropy of fusion (ΔSfus) will be the driving force to decrease their melting temperature. Then to increase structural ΔSfus, A‐site cations are designed that are rigid in the solid crystal, and become flexible in the molten state. Different tail groups in the A‐site cations form hydrogen‐, halogen‐ and even covalent bonding‐interactions, making the cation‐layer rigid in the solid form. Additionally, the rotation of ─NH3+ head group is suppressed by replacing ─H with ─CH3, further enhancing the rigidity. Six A2PbX4 crystals with high ΔSfus and low melting temperatures are prepared using this approach. For example, [I−(CH2)3−NH2(CH3)]2PbI4 reversibly melts at 388 K (decomposition temperature 500 K), and then recrystallizes back upon cooling. Consequently, melt‐pressed films are grown demonstrating the solvent‐ and vacuum‐free perovskite films for future optoelectronic devices.
This work reveals a structure‐property relationship where the structural entropy of fusion (ΔSfus) drives the melting of A2PbX4 layered perovskites. Non‐covalent interactions and steric hindrances rigidify the A‐site organic layer in solid state, and their removal in molten state yields high ΔSfus and low melting temperature. The stable melt enables solvent‐ and vacuum‐free melt‐pressed films for optoelectronic devices.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39219217</pmid><doi>10.1002/smll.202406735</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2308-334X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (48), p.e2406735-n/a |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_3099857632 |
source | Wiley Online Library All Journals |
subjects | Ammonia Cations Decomposition Entropy High temperature hybrid perovskites Ionic liquids Melt temperature Melting Optoelectronic devices Perovskites photodetector Recrystallization reversible melting solvent‐ and vacuum‐free films structural entropy of fusion |
title | Entropy‐Driven Reversible Melting and Recrystallization of Layered Hybrid Perovskites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A26%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%E2%80%90Driven%20Reversible%20Melting%20and%20Recrystallization%20of%20Layered%20Hybrid%20Perovskites&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Rajput,%20Parikshit%20Kumar&rft.date=2024-11-01&rft.volume=20&rft.issue=48&rft.spage=e2406735&rft.epage=n/a&rft.pages=e2406735-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202406735&rft_dat=%3Cproquest_cross%3E3133342971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133342971&rft_id=info:pmid/39219217&rfr_iscdi=true |