Entropy‐Driven Reversible Melting and Recrystallization of Layered Hybrid Perovskites

Typical layered 2D A2PbX4 (A: organic ammonium cation, X: Br, I) perovskites undergo irreversible decomposition at high temperatures. Can they be designed to melt at lower temperatures without decomposition? Which thermodynamic parameter drive the melting of layered perovskites? These questions are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-11, Vol.20 (48), p.e2406735-n/a
Hauptverfasser: Rajput, Parikshit Kumar, Salunkhe, Parashurama, Sarma, Manmayuri, Basu, Meghasree, Gopal, Animesh, Joshi, Aprajita, Shingote, Ajinkya Sundarnath, Saha, Surajit, Rahman, Atikur, Nag, Angshuman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 48
container_start_page e2406735
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Rajput, Parikshit Kumar
Salunkhe, Parashurama
Sarma, Manmayuri
Basu, Meghasree
Gopal, Animesh
Joshi, Aprajita
Shingote, Ajinkya Sundarnath
Saha, Surajit
Rahman, Atikur
Nag, Angshuman
description Typical layered 2D A2PbX4 (A: organic ammonium cation, X: Br, I) perovskites undergo irreversible decomposition at high temperatures. Can they be designed to melt at lower temperatures without decomposition? Which thermodynamic parameter drive the melting of layered perovskites? These questions are addressed by considering the melt of A2PbX4 as a mixture of ions (like ionic liquids), and hypothesized that the increase in the structural entropy of fusion (ΔSfus) will be the driving force to decrease their melting temperature. Then to increase structural ΔSfus, A‐site cations are designed that are rigid in the solid crystal, and become flexible in the molten state. Different tail groups in the A‐site cations form hydrogen‐, halogen‐ and even covalent bonding‐interactions, making the cation‐layer rigid in the solid form. Additionally, the rotation of ─NH3+ head group is suppressed by replacing ─H with ─CH3, further enhancing the rigidity. Six A2PbX4 crystals with high ΔSfus and low melting temperatures are prepared using this approach. For example, [I−(CH2)3−NH2(CH3)]2PbI4 reversibly melts at 388 K (decomposition temperature 500 K), and then recrystallizes back upon cooling. Consequently, melt‐pressed films are grown demonstrating the solvent‐ and vacuum‐free perovskite films for future optoelectronic devices. This work reveals a structure‐property relationship where the structural entropy of fusion (ΔSfus) drives the melting of A2PbX4 layered perovskites. Non‐covalent interactions and steric hindrances rigidify the A‐site organic layer in solid state, and their removal in molten state yields high ΔSfus and low melting temperature. The stable melt enables solvent‐ and vacuum‐free melt‐pressed films for optoelectronic devices.
doi_str_mv 10.1002/smll.202406735
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3099857632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133342971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2585-baef0bf45f611725ae340835e665e00c55bdfd0a1ab0e211860e134e0b9384063</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoVqtXj7LgxUvrJNnsx1FqtcIWxQ88huzurKSmuzXZVtaTP8Hf6C9xS2sFL0JgwvDMy8xDyBGFPgVgZ25qTJ8B8yEIudgiezSgvBdELN7e_Cl0yL5zEwBOmR_ukg6PGW1fuEeehmVtq1nz9fF5YfUCS-8OF2idTg16YzS1Lp89VeZtO7ONq5Ux-l3Vuiq9qvAS1aDF3Bs1qdW5d4u2WrgXXaM7IDuFMg4P17VLHi-HD4NRL7m5uh6cJ72MiUj0UoUFpIUvioDSkAmF3IeICwwCgQCZEGle5KCoSgEZpVEASLmPkMY8am_mXXK6yp3Z6nWOrpZT7TI0RpVYzZ3kEMeRCAPOWvTkDzqp5rZst5Occs59Foe0pforKrOVcxYLObN6qmwjKcilcrlULjfK24Hjdew8nWK-wX8ct0C8At60weafOHk_TpLf8G-C5I5n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133342971</pqid></control><display><type>article</type><title>Entropy‐Driven Reversible Melting and Recrystallization of Layered Hybrid Perovskites</title><source>Wiley Online Library All Journals</source><creator>Rajput, Parikshit Kumar ; Salunkhe, Parashurama ; Sarma, Manmayuri ; Basu, Meghasree ; Gopal, Animesh ; Joshi, Aprajita ; Shingote, Ajinkya Sundarnath ; Saha, Surajit ; Rahman, Atikur ; Nag, Angshuman</creator><creatorcontrib>Rajput, Parikshit Kumar ; Salunkhe, Parashurama ; Sarma, Manmayuri ; Basu, Meghasree ; Gopal, Animesh ; Joshi, Aprajita ; Shingote, Ajinkya Sundarnath ; Saha, Surajit ; Rahman, Atikur ; Nag, Angshuman</creatorcontrib><description>Typical layered 2D A2PbX4 (A: organic ammonium cation, X: Br, I) perovskites undergo irreversible decomposition at high temperatures. Can they be designed to melt at lower temperatures without decomposition? Which thermodynamic parameter drive the melting of layered perovskites? These questions are addressed by considering the melt of A2PbX4 as a mixture of ions (like ionic liquids), and hypothesized that the increase in the structural entropy of fusion (ΔSfus) will be the driving force to decrease their melting temperature. Then to increase structural ΔSfus, A‐site cations are designed that are rigid in the solid crystal, and become flexible in the molten state. Different tail groups in the A‐site cations form hydrogen‐, halogen‐ and even covalent bonding‐interactions, making the cation‐layer rigid in the solid form. Additionally, the rotation of ─NH3+ head group is suppressed by replacing ─H with ─CH3, further enhancing the rigidity. Six A2PbX4 crystals with high ΔSfus and low melting temperatures are prepared using this approach. For example, [I−(CH2)3−NH2(CH3)]2PbI4 reversibly melts at 388 K (decomposition temperature 500 K), and then recrystallizes back upon cooling. Consequently, melt‐pressed films are grown demonstrating the solvent‐ and vacuum‐free perovskite films for future optoelectronic devices. This work reveals a structure‐property relationship where the structural entropy of fusion (ΔSfus) drives the melting of A2PbX4 layered perovskites. Non‐covalent interactions and steric hindrances rigidify the A‐site organic layer in solid state, and their removal in molten state yields high ΔSfus and low melting temperature. The stable melt enables solvent‐ and vacuum‐free melt‐pressed films for optoelectronic devices.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202406735</identifier><identifier>PMID: 39219217</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Ammonia ; Cations ; Decomposition ; Entropy ; High temperature ; hybrid perovskites ; Ionic liquids ; Melt temperature ; Melting ; Optoelectronic devices ; Perovskites ; photodetector ; Recrystallization ; reversible melting ; solvent‐ and vacuum‐free films ; structural entropy of fusion</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (48), p.e2406735-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2585-baef0bf45f611725ae340835e665e00c55bdfd0a1ab0e211860e134e0b9384063</cites><orcidid>0000-0003-2308-334X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202406735$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202406735$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39219217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rajput, Parikshit Kumar</creatorcontrib><creatorcontrib>Salunkhe, Parashurama</creatorcontrib><creatorcontrib>Sarma, Manmayuri</creatorcontrib><creatorcontrib>Basu, Meghasree</creatorcontrib><creatorcontrib>Gopal, Animesh</creatorcontrib><creatorcontrib>Joshi, Aprajita</creatorcontrib><creatorcontrib>Shingote, Ajinkya Sundarnath</creatorcontrib><creatorcontrib>Saha, Surajit</creatorcontrib><creatorcontrib>Rahman, Atikur</creatorcontrib><creatorcontrib>Nag, Angshuman</creatorcontrib><title>Entropy‐Driven Reversible Melting and Recrystallization of Layered Hybrid Perovskites</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Typical layered 2D A2PbX4 (A: organic ammonium cation, X: Br, I) perovskites undergo irreversible decomposition at high temperatures. Can they be designed to melt at lower temperatures without decomposition? Which thermodynamic parameter drive the melting of layered perovskites? These questions are addressed by considering the melt of A2PbX4 as a mixture of ions (like ionic liquids), and hypothesized that the increase in the structural entropy of fusion (ΔSfus) will be the driving force to decrease their melting temperature. Then to increase structural ΔSfus, A‐site cations are designed that are rigid in the solid crystal, and become flexible in the molten state. Different tail groups in the A‐site cations form hydrogen‐, halogen‐ and even covalent bonding‐interactions, making the cation‐layer rigid in the solid form. Additionally, the rotation of ─NH3+ head group is suppressed by replacing ─H with ─CH3, further enhancing the rigidity. Six A2PbX4 crystals with high ΔSfus and low melting temperatures are prepared using this approach. For example, [I−(CH2)3−NH2(CH3)]2PbI4 reversibly melts at 388 K (decomposition temperature 500 K), and then recrystallizes back upon cooling. Consequently, melt‐pressed films are grown demonstrating the solvent‐ and vacuum‐free perovskite films for future optoelectronic devices. This work reveals a structure‐property relationship where the structural entropy of fusion (ΔSfus) drives the melting of A2PbX4 layered perovskites. Non‐covalent interactions and steric hindrances rigidify the A‐site organic layer in solid state, and their removal in molten state yields high ΔSfus and low melting temperature. The stable melt enables solvent‐ and vacuum‐free melt‐pressed films for optoelectronic devices.</description><subject>Ammonia</subject><subject>Cations</subject><subject>Decomposition</subject><subject>Entropy</subject><subject>High temperature</subject><subject>hybrid perovskites</subject><subject>Ionic liquids</subject><subject>Melt temperature</subject><subject>Melting</subject><subject>Optoelectronic devices</subject><subject>Perovskites</subject><subject>photodetector</subject><subject>Recrystallization</subject><subject>reversible melting</subject><subject>solvent‐ and vacuum‐free films</subject><subject>structural entropy of fusion</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoVqtXj7LgxUvrJNnsx1FqtcIWxQ88huzurKSmuzXZVtaTP8Hf6C9xS2sFL0JgwvDMy8xDyBGFPgVgZ25qTJ8B8yEIudgiezSgvBdELN7e_Cl0yL5zEwBOmR_ukg6PGW1fuEeehmVtq1nz9fF5YfUCS-8OF2idTg16YzS1Lp89VeZtO7ONq5Ux-l3Vuiq9qvAS1aDF3Bs1qdW5d4u2WrgXXaM7IDuFMg4P17VLHi-HD4NRL7m5uh6cJ72MiUj0UoUFpIUvioDSkAmF3IeICwwCgQCZEGle5KCoSgEZpVEASLmPkMY8am_mXXK6yp3Z6nWOrpZT7TI0RpVYzZ3kEMeRCAPOWvTkDzqp5rZst5Occs59Foe0pforKrOVcxYLObN6qmwjKcilcrlULjfK24Hjdew8nWK-wX8ct0C8At60weafOHk_TpLf8G-C5I5n</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Rajput, Parikshit Kumar</creator><creator>Salunkhe, Parashurama</creator><creator>Sarma, Manmayuri</creator><creator>Basu, Meghasree</creator><creator>Gopal, Animesh</creator><creator>Joshi, Aprajita</creator><creator>Shingote, Ajinkya Sundarnath</creator><creator>Saha, Surajit</creator><creator>Rahman, Atikur</creator><creator>Nag, Angshuman</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2308-334X</orcidid></search><sort><creationdate>20241101</creationdate><title>Entropy‐Driven Reversible Melting and Recrystallization of Layered Hybrid Perovskites</title><author>Rajput, Parikshit Kumar ; Salunkhe, Parashurama ; Sarma, Manmayuri ; Basu, Meghasree ; Gopal, Animesh ; Joshi, Aprajita ; Shingote, Ajinkya Sundarnath ; Saha, Surajit ; Rahman, Atikur ; Nag, Angshuman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2585-baef0bf45f611725ae340835e665e00c55bdfd0a1ab0e211860e134e0b9384063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ammonia</topic><topic>Cations</topic><topic>Decomposition</topic><topic>Entropy</topic><topic>High temperature</topic><topic>hybrid perovskites</topic><topic>Ionic liquids</topic><topic>Melt temperature</topic><topic>Melting</topic><topic>Optoelectronic devices</topic><topic>Perovskites</topic><topic>photodetector</topic><topic>Recrystallization</topic><topic>reversible melting</topic><topic>solvent‐ and vacuum‐free films</topic><topic>structural entropy of fusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajput, Parikshit Kumar</creatorcontrib><creatorcontrib>Salunkhe, Parashurama</creatorcontrib><creatorcontrib>Sarma, Manmayuri</creatorcontrib><creatorcontrib>Basu, Meghasree</creatorcontrib><creatorcontrib>Gopal, Animesh</creatorcontrib><creatorcontrib>Joshi, Aprajita</creatorcontrib><creatorcontrib>Shingote, Ajinkya Sundarnath</creatorcontrib><creatorcontrib>Saha, Surajit</creatorcontrib><creatorcontrib>Rahman, Atikur</creatorcontrib><creatorcontrib>Nag, Angshuman</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajput, Parikshit Kumar</au><au>Salunkhe, Parashurama</au><au>Sarma, Manmayuri</au><au>Basu, Meghasree</au><au>Gopal, Animesh</au><au>Joshi, Aprajita</au><au>Shingote, Ajinkya Sundarnath</au><au>Saha, Surajit</au><au>Rahman, Atikur</au><au>Nag, Angshuman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy‐Driven Reversible Melting and Recrystallization of Layered Hybrid Perovskites</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>20</volume><issue>48</issue><spage>e2406735</spage><epage>n/a</epage><pages>e2406735-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Typical layered 2D A2PbX4 (A: organic ammonium cation, X: Br, I) perovskites undergo irreversible decomposition at high temperatures. Can they be designed to melt at lower temperatures without decomposition? Which thermodynamic parameter drive the melting of layered perovskites? These questions are addressed by considering the melt of A2PbX4 as a mixture of ions (like ionic liquids), and hypothesized that the increase in the structural entropy of fusion (ΔSfus) will be the driving force to decrease their melting temperature. Then to increase structural ΔSfus, A‐site cations are designed that are rigid in the solid crystal, and become flexible in the molten state. Different tail groups in the A‐site cations form hydrogen‐, halogen‐ and even covalent bonding‐interactions, making the cation‐layer rigid in the solid form. Additionally, the rotation of ─NH3+ head group is suppressed by replacing ─H with ─CH3, further enhancing the rigidity. Six A2PbX4 crystals with high ΔSfus and low melting temperatures are prepared using this approach. For example, [I−(CH2)3−NH2(CH3)]2PbI4 reversibly melts at 388 K (decomposition temperature 500 K), and then recrystallizes back upon cooling. Consequently, melt‐pressed films are grown demonstrating the solvent‐ and vacuum‐free perovskite films for future optoelectronic devices. This work reveals a structure‐property relationship where the structural entropy of fusion (ΔSfus) drives the melting of A2PbX4 layered perovskites. Non‐covalent interactions and steric hindrances rigidify the A‐site organic layer in solid state, and their removal in molten state yields high ΔSfus and low melting temperature. The stable melt enables solvent‐ and vacuum‐free melt‐pressed films for optoelectronic devices.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39219217</pmid><doi>10.1002/smll.202406735</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2308-334X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (48), p.e2406735-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3099857632
source Wiley Online Library All Journals
subjects Ammonia
Cations
Decomposition
Entropy
High temperature
hybrid perovskites
Ionic liquids
Melt temperature
Melting
Optoelectronic devices
Perovskites
photodetector
Recrystallization
reversible melting
solvent‐ and vacuum‐free films
structural entropy of fusion
title Entropy‐Driven Reversible Melting and Recrystallization of Layered Hybrid Perovskites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A26%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%E2%80%90Driven%20Reversible%20Melting%20and%20Recrystallization%20of%20Layered%20Hybrid%20Perovskites&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Rajput,%20Parikshit%20Kumar&rft.date=2024-11-01&rft.volume=20&rft.issue=48&rft.spage=e2406735&rft.epage=n/a&rft.pages=e2406735-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202406735&rft_dat=%3Cproquest_cross%3E3133342971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133342971&rft_id=info:pmid/39219217&rfr_iscdi=true