Dual regulation of thermal conductivity and mechanical performance of nano cellulose-based composite via mimicking plant cell wall structure

Combining thermal conductive fillers and flexible polymers is an agile approach to fabricating composites with heat-conducting performance. However, the thermal conductivity of the composites is hard to reach an equal level to the functional fillers. The mainspring is that the thermally conductive p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2024-10, Vol.278 (Pt 3), p.134705, Article 134705
Hauptverfasser: Su, Chen, Sun, Mengya, Bian, Huiyang, Fang, Guigan, Dai, Hongqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue Pt 3
container_start_page 134705
container_title International journal of biological macromolecules
container_volume 278
creator Su, Chen
Sun, Mengya
Bian, Huiyang
Fang, Guigan
Dai, Hongqi
description Combining thermal conductive fillers and flexible polymers is an agile approach to fabricating composites with heat-conducting performance. However, the thermal conductivity of the composites is hard to reach an equal level to the functional fillers. The mainspring is that the thermally conductive pathways within the composite could not be well-constructed due to the air-induced interface thermal resistance. Herein, inspired by the plant cell wall structure, polyvinyl alcohol (PVA) with abundant hydroxyl groups was adopted as a binder for boosting the thermally conductive pathways construction between cellulose nanofiber (CNF) and alkalized hexagonal boron nitride (BN-OH), also for strengthening the mechanical performance of the composite. The results showed that the tensile strength and through-plane thermal conductivity of the composite were high up to 91.0 MPa and 2.2 W m−1 K−1 at 40 wt% PVA content, exhibiting 121 % and 450 % enhancements compared to pure CNF film (41.2 MPa and 0.4 W m−1 K−1). Moreover, the composite also presented high thermal stability (decomposition temperature of onset was 218 °C) and good hydrophobicity properties. Overall, this study innovatively proposes an idea for enhancing the thermal conductivity and improving the mechanical properties of the composite, which is indispensable for developing thermal management materials for next-generation electronics. •A novel thermally conductive film with plant cell wall structure was prepared.•The biomimetic structure provided abundant thermally conductive pathways.•The through-plane thermal conductivity of the composite was high up to 2.2 W m−1 K−1.•The bionic structure endowed the film with good mechanical properties of 91.0 MPa.
doi_str_mv 10.1016/j.ijbiomac.2024.134705
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3099807197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813024055107</els_id><sourcerecordid>3099807197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-2e07e04aa2eef8de41a598aebd91efaba4f085ecb1c58e403d0be1d1534bbf23</originalsourceid><addsrcrecordid>eNqFkcFu3CAQhlHVqtkmeYWIYy_egsFrfGuVNmmlSL3kjsYwTtgacAFvlXfoQ5ftJr32wkjD9_Mz8xNyxdmWM777sN-6_eiiB7NtWSu3XMieda_Ihqt-aBhj4jXZMC55o7hgZ-Rdzvva3XVcvSVnYmi5VEJsyO_PK8w04cM6Q3Ex0DjR8ojJ166Jwa6muIMrTxSCpR7NIwRn6t2CaYqVCgaPkgAhUoPzvM4xYzNCRlv1fonZFaQHB9Q778wPFx7oMkMof2n6C-qRS6o2a8IL8maCOePlcz0n9zdf7q-_Nnffb79df7prTCu70rTIemQSoEWclEXJoRsU4GgHjhOMICemOjQjN51CyYRlI3LLOyHHcWrFOXl_enZJ8eeKuWjv8vE7EDCuWQs2DIr1fOgrujuhJsWcE056Sc5DetKc6WMQeq9fgtDHIPQpiCq8evZYR4_2n-xl8xX4eAKwDnpwmHQ2Dus6rUtoirbR_c_jDx3Oocw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099807197</pqid></control><display><type>article</type><title>Dual regulation of thermal conductivity and mechanical performance of nano cellulose-based composite via mimicking plant cell wall structure</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Su, Chen ; Sun, Mengya ; Bian, Huiyang ; Fang, Guigan ; Dai, Hongqi</creator><creatorcontrib>Su, Chen ; Sun, Mengya ; Bian, Huiyang ; Fang, Guigan ; Dai, Hongqi</creatorcontrib><description>Combining thermal conductive fillers and flexible polymers is an agile approach to fabricating composites with heat-conducting performance. However, the thermal conductivity of the composites is hard to reach an equal level to the functional fillers. The mainspring is that the thermally conductive pathways within the composite could not be well-constructed due to the air-induced interface thermal resistance. Herein, inspired by the plant cell wall structure, polyvinyl alcohol (PVA) with abundant hydroxyl groups was adopted as a binder for boosting the thermally conductive pathways construction between cellulose nanofiber (CNF) and alkalized hexagonal boron nitride (BN-OH), also for strengthening the mechanical performance of the composite. The results showed that the tensile strength and through-plane thermal conductivity of the composite were high up to 91.0 MPa and 2.2 W m−1 K−1 at 40 wt% PVA content, exhibiting 121 % and 450 % enhancements compared to pure CNF film (41.2 MPa and 0.4 W m−1 K−1). Moreover, the composite also presented high thermal stability (decomposition temperature of onset was 218 °C) and good hydrophobicity properties. Overall, this study innovatively proposes an idea for enhancing the thermal conductivity and improving the mechanical properties of the composite, which is indispensable for developing thermal management materials for next-generation electronics. •A novel thermally conductive film with plant cell wall structure was prepared.•The biomimetic structure provided abundant thermally conductive pathways.•The through-plane thermal conductivity of the composite was high up to 2.2 W m−1 K−1.•The bionic structure endowed the film with good mechanical properties of 91.0 MPa.</description><identifier>ISSN: 0141-8130</identifier><identifier>ISSN: 1879-0003</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2024.134705</identifier><identifier>PMID: 39214833</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Boron Compounds - chemistry ; Cell Wall - chemistry ; Cellulose - chemistry ; Cellulose nanofiber ; Hexagonal boron nitride ; Hydrophobic and Hydrophilic Interactions ; Mechanical performance ; Mechanical Phenomena ; Nanocomposites - chemistry ; Nanofibers - chemistry ; Polyvinyl alcohol ; Polyvinyl Alcohol - chemistry ; Temperature ; Tensile Strength ; Thermal Conductivity</subject><ispartof>International journal of biological macromolecules, 2024-10, Vol.278 (Pt 3), p.134705, Article 134705</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-2e07e04aa2eef8de41a598aebd91efaba4f085ecb1c58e403d0be1d1534bbf23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0141813024055107$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39214833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Chen</creatorcontrib><creatorcontrib>Sun, Mengya</creatorcontrib><creatorcontrib>Bian, Huiyang</creatorcontrib><creatorcontrib>Fang, Guigan</creatorcontrib><creatorcontrib>Dai, Hongqi</creatorcontrib><title>Dual regulation of thermal conductivity and mechanical performance of nano cellulose-based composite via mimicking plant cell wall structure</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>Combining thermal conductive fillers and flexible polymers is an agile approach to fabricating composites with heat-conducting performance. However, the thermal conductivity of the composites is hard to reach an equal level to the functional fillers. The mainspring is that the thermally conductive pathways within the composite could not be well-constructed due to the air-induced interface thermal resistance. Herein, inspired by the plant cell wall structure, polyvinyl alcohol (PVA) with abundant hydroxyl groups was adopted as a binder for boosting the thermally conductive pathways construction between cellulose nanofiber (CNF) and alkalized hexagonal boron nitride (BN-OH), also for strengthening the mechanical performance of the composite. The results showed that the tensile strength and through-plane thermal conductivity of the composite were high up to 91.0 MPa and 2.2 W m−1 K−1 at 40 wt% PVA content, exhibiting 121 % and 450 % enhancements compared to pure CNF film (41.2 MPa and 0.4 W m−1 K−1). Moreover, the composite also presented high thermal stability (decomposition temperature of onset was 218 °C) and good hydrophobicity properties. Overall, this study innovatively proposes an idea for enhancing the thermal conductivity and improving the mechanical properties of the composite, which is indispensable for developing thermal management materials for next-generation electronics. •A novel thermally conductive film with plant cell wall structure was prepared.•The biomimetic structure provided abundant thermally conductive pathways.•The through-plane thermal conductivity of the composite was high up to 2.2 W m−1 K−1.•The bionic structure endowed the film with good mechanical properties of 91.0 MPa.</description><subject>Boron Compounds - chemistry</subject><subject>Cell Wall - chemistry</subject><subject>Cellulose - chemistry</subject><subject>Cellulose nanofiber</subject><subject>Hexagonal boron nitride</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Mechanical performance</subject><subject>Mechanical Phenomena</subject><subject>Nanocomposites - chemistry</subject><subject>Nanofibers - chemistry</subject><subject>Polyvinyl alcohol</subject><subject>Polyvinyl Alcohol - chemistry</subject><subject>Temperature</subject><subject>Tensile Strength</subject><subject>Thermal Conductivity</subject><issn>0141-8130</issn><issn>1879-0003</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu3CAQhlHVqtkmeYWIYy_egsFrfGuVNmmlSL3kjsYwTtgacAFvlXfoQ5ftJr32wkjD9_Mz8xNyxdmWM777sN-6_eiiB7NtWSu3XMieda_Ihqt-aBhj4jXZMC55o7hgZ-Rdzvva3XVcvSVnYmi5VEJsyO_PK8w04cM6Q3Ex0DjR8ojJ166Jwa6muIMrTxSCpR7NIwRn6t2CaYqVCgaPkgAhUoPzvM4xYzNCRlv1fonZFaQHB9Q778wPFx7oMkMof2n6C-qRS6o2a8IL8maCOePlcz0n9zdf7q-_Nnffb79df7prTCu70rTIemQSoEWclEXJoRsU4GgHjhOMICemOjQjN51CyYRlI3LLOyHHcWrFOXl_enZJ8eeKuWjv8vE7EDCuWQs2DIr1fOgrujuhJsWcE056Sc5DetKc6WMQeq9fgtDHIPQpiCq8evZYR4_2n-xl8xX4eAKwDnpwmHQ2Dus6rUtoirbR_c_jDx3Oocw</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Su, Chen</creator><creator>Sun, Mengya</creator><creator>Bian, Huiyang</creator><creator>Fang, Guigan</creator><creator>Dai, Hongqi</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202410</creationdate><title>Dual regulation of thermal conductivity and mechanical performance of nano cellulose-based composite via mimicking plant cell wall structure</title><author>Su, Chen ; Sun, Mengya ; Bian, Huiyang ; Fang, Guigan ; Dai, Hongqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-2e07e04aa2eef8de41a598aebd91efaba4f085ecb1c58e403d0be1d1534bbf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boron Compounds - chemistry</topic><topic>Cell Wall - chemistry</topic><topic>Cellulose - chemistry</topic><topic>Cellulose nanofiber</topic><topic>Hexagonal boron nitride</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Mechanical performance</topic><topic>Mechanical Phenomena</topic><topic>Nanocomposites - chemistry</topic><topic>Nanofibers - chemistry</topic><topic>Polyvinyl alcohol</topic><topic>Polyvinyl Alcohol - chemistry</topic><topic>Temperature</topic><topic>Tensile Strength</topic><topic>Thermal Conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Chen</creatorcontrib><creatorcontrib>Sun, Mengya</creatorcontrib><creatorcontrib>Bian, Huiyang</creatorcontrib><creatorcontrib>Fang, Guigan</creatorcontrib><creatorcontrib>Dai, Hongqi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Chen</au><au>Sun, Mengya</au><au>Bian, Huiyang</au><au>Fang, Guigan</au><au>Dai, Hongqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual regulation of thermal conductivity and mechanical performance of nano cellulose-based composite via mimicking plant cell wall structure</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2024-10</date><risdate>2024</risdate><volume>278</volume><issue>Pt 3</issue><spage>134705</spage><pages>134705-</pages><artnum>134705</artnum><issn>0141-8130</issn><issn>1879-0003</issn><eissn>1879-0003</eissn><abstract>Combining thermal conductive fillers and flexible polymers is an agile approach to fabricating composites with heat-conducting performance. However, the thermal conductivity of the composites is hard to reach an equal level to the functional fillers. The mainspring is that the thermally conductive pathways within the composite could not be well-constructed due to the air-induced interface thermal resistance. Herein, inspired by the plant cell wall structure, polyvinyl alcohol (PVA) with abundant hydroxyl groups was adopted as a binder for boosting the thermally conductive pathways construction between cellulose nanofiber (CNF) and alkalized hexagonal boron nitride (BN-OH), also for strengthening the mechanical performance of the composite. The results showed that the tensile strength and through-plane thermal conductivity of the composite were high up to 91.0 MPa and 2.2 W m−1 K−1 at 40 wt% PVA content, exhibiting 121 % and 450 % enhancements compared to pure CNF film (41.2 MPa and 0.4 W m−1 K−1). Moreover, the composite also presented high thermal stability (decomposition temperature of onset was 218 °C) and good hydrophobicity properties. Overall, this study innovatively proposes an idea for enhancing the thermal conductivity and improving the mechanical properties of the composite, which is indispensable for developing thermal management materials for next-generation electronics. •A novel thermally conductive film with plant cell wall structure was prepared.•The biomimetic structure provided abundant thermally conductive pathways.•The through-plane thermal conductivity of the composite was high up to 2.2 W m−1 K−1.•The bionic structure endowed the film with good mechanical properties of 91.0 MPa.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39214833</pmid><doi>10.1016/j.ijbiomac.2024.134705</doi></addata></record>
fulltext fulltext
identifier ISSN: 0141-8130
ispartof International journal of biological macromolecules, 2024-10, Vol.278 (Pt 3), p.134705, Article 134705
issn 0141-8130
1879-0003
1879-0003
language eng
recordid cdi_proquest_miscellaneous_3099807197
source MEDLINE; Elsevier ScienceDirect Journals
subjects Boron Compounds - chemistry
Cell Wall - chemistry
Cellulose - chemistry
Cellulose nanofiber
Hexagonal boron nitride
Hydrophobic and Hydrophilic Interactions
Mechanical performance
Mechanical Phenomena
Nanocomposites - chemistry
Nanofibers - chemistry
Polyvinyl alcohol
Polyvinyl Alcohol - chemistry
Temperature
Tensile Strength
Thermal Conductivity
title Dual regulation of thermal conductivity and mechanical performance of nano cellulose-based composite via mimicking plant cell wall structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A04%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20regulation%20of%20thermal%20conductivity%20and%20mechanical%20performance%20of%20nano%20cellulose-based%20composite%20via%20mimicking%20plant%20cell%20wall%20structure&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Su,%20Chen&rft.date=2024-10&rft.volume=278&rft.issue=Pt%203&rft.spage=134705&rft.pages=134705-&rft.artnum=134705&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2024.134705&rft_dat=%3Cproquest_cross%3E3099807197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3099807197&rft_id=info:pmid/39214833&rft_els_id=S0141813024055107&rfr_iscdi=true