Development and characterization of polylactic acid/starch biocomposites – From melt blending to preliminary life cycle assessment

This study presents a comprehensive analysis encompassing melt blending, characterization, life cycle assessment (LCA), and 3D printing of a range of polylactic acid (PLA)/starch biocomposites, with starch content varying from 0 to 50 wt%. To enhance compatibility between the starch particles and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2024-11, Vol.279 (Pt 1), p.135173, Article 135173
Hauptverfasser: Baniasadi, Hossein, Äkräs, Laura, Madani, Zahra, Silvenius, Frans, Fazeli, Mahyar, Lipponen, Sami, Vapaavuori, Jaana, Seppälä, Jukka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents a comprehensive analysis encompassing melt blending, characterization, life cycle assessment (LCA), and 3D printing of a range of polylactic acid (PLA)/starch biocomposites, with starch content varying from 0 to 50 wt%. To enhance compatibility between the starch particles and the PLA matrix, we utilized a solvent-free method to graft N-octadecyl isocyanate (ODI) molecules onto the surface of the starch particles, resulting in ODI-g-starch, which yielded several improved properties. Notably, toughness and elongation at break improved by approximately 170 % and 300 %, respectively. Moreover, the crystallinity increased from 11.6 % in plain PLA to 30.1 %, suggesting that the uniform dispersion of ODI-g-starch particles acted as nucleating sites for the crystallization of PLA chains. Additionally, viscosity decreased significantly with the introduction of ODI-g-starch particles, indicating their plasticizing effect, thereby enhancing the processability and ease of fabrication of the biocomposite. Crucially, our LCA analysis revealed a significant reduction in the carbon footprint of these biocomposites, up to 18 % and 63 %, compared to plain PLA and selected fossil-based plastics, respectively, upon the incorporation of ODI-g-starch. In summary, our research introduces the newly developed PLA/starch biocomposites as a sustainable and eco-friendly alternative to commercially available plain PLA and specific fossil-based plastics. •Polylactic acid was melt blended with varying, ODI-grafted starch content.•Properties of toughness, elongation at break, and crystallization were improved.•A preliminary life cycle assessment yielded clear carbon footprint reductions.•Precise geometries with high surface quality were 3D printed. [Display omitted]
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2024.135173