pH Variation in the Acidic Electrochemical CO2 Reduction Process

To address the carbonate problem in the alkaline electrochemical CO2 reduction reaction (CO2RR), more attention has been paid to the CO2RR conducted in acidic electrolytes. The pH stability of such an acidic electrolyte is vital to make sure that the conclusion made in the so-called acidic CO2RR is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2024-09, Vol.40 (37), p.19370-19376
Hauptverfasser: Liu, Cong, Shi, Zhaoping, Zhang, Huimin, Yan, Chengyang, Song, Ping, Xing, Wei, Xu, Weilin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19376
container_issue 37
container_start_page 19370
container_title Langmuir
container_volume 40
creator Liu, Cong
Shi, Zhaoping
Zhang, Huimin
Yan, Chengyang
Song, Ping
Xing, Wei
Xu, Weilin
description To address the carbonate problem in the alkaline electrochemical CO2 reduction reaction (CO2RR), more attention has been paid to the CO2RR conducted in acidic electrolytes. The pH stability of such an acidic electrolyte is vital to make sure that the conclusion made in the so-called acidic CO2RR is reliable. Herein, based on reported model electrocatalysts for acidic CO2RR, by monitoring the varying of pH and alkali cation (K+) concentration along with the CO2RR performance in initially acidic electrolyte solution (K2SO4 with pH = 3.5), we unveil their remarkable CO2RR performance along with the rapid pH increase up to 9.5 in the cathode chamber and decrease down to 2.4 in the anode chamber due to the diffusion of K+ along with protons through the proton exchange membrane from the anode to the cathode chamber. We further reveal the rapid collapse of their CO2RR performance in a constant acid solution. This means that some previously reported “remarkable acidic CO2RR performances” actually originate from the alkaline rather than acidic electrolyte, and the conclusions made in such work need to be reconsidered. We also summarize the actual relationship between the CO2RR performance and catholyte pH in widely used Bi- and Sn-based catalysts. This work provides deeper insights into the stability of acidity and the pH effect on electrocatalysts for the CO2RR.
doi_str_mv 10.1021/acs.langmuir.4c01429
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3099803712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099803712</sourcerecordid><originalsourceid>FETCH-LOGICAL-a159t-cd370ef486bf3c36282cc16fc0162a7563a21496ebd3d82552ac4876a21937d33</originalsourceid><addsrcrecordid>eNo1kEFOwzAQRS0EEqFwAxZeskmxPY4d76iqQpEqFSFga7kTh7pKkxIn98elZTXSn6fRn0fIPWdTzgR_dBinjWu_92PopxIZl8JckIwXguVFKfQlyZiWkGup4JrcxLhjjBmQJiNPhyX9cn1wQ-haGlo6bD2dYagC0kXjceg73Pp9QNfQ-VrQd1-N-Me-pY2P8ZZc1a6J_u48J-TzefExX-ar9cvrfLbKHS_MkGMFmvlalmpTA4ISpUDkqk5llXC6UOAEl0b5TQVVKYpCOJSlVik1oCuACXk43T303c_o42D3IaJv0t--G6MFZkzJQHORUHZCkxe768a-TcUsZ_Yoyx7Df1n2LAt-AUtCXwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099803712</pqid></control><display><type>article</type><title>pH Variation in the Acidic Electrochemical CO2 Reduction Process</title><source>American Chemical Society</source><creator>Liu, Cong ; Shi, Zhaoping ; Zhang, Huimin ; Yan, Chengyang ; Song, Ping ; Xing, Wei ; Xu, Weilin</creator><creatorcontrib>Liu, Cong ; Shi, Zhaoping ; Zhang, Huimin ; Yan, Chengyang ; Song, Ping ; Xing, Wei ; Xu, Weilin</creatorcontrib><description>To address the carbonate problem in the alkaline electrochemical CO2 reduction reaction (CO2RR), more attention has been paid to the CO2RR conducted in acidic electrolytes. The pH stability of such an acidic electrolyte is vital to make sure that the conclusion made in the so-called acidic CO2RR is reliable. Herein, based on reported model electrocatalysts for acidic CO2RR, by monitoring the varying of pH and alkali cation (K+) concentration along with the CO2RR performance in initially acidic electrolyte solution (K2SO4 with pH = 3.5), we unveil their remarkable CO2RR performance along with the rapid pH increase up to 9.5 in the cathode chamber and decrease down to 2.4 in the anode chamber due to the diffusion of K+ along with protons through the proton exchange membrane from the anode to the cathode chamber. We further reveal the rapid collapse of their CO2RR performance in a constant acid solution. This means that some previously reported “remarkable acidic CO2RR performances” actually originate from the alkaline rather than acidic electrolyte, and the conclusions made in such work need to be reconsidered. We also summarize the actual relationship between the CO2RR performance and catholyte pH in widely used Bi- and Sn-based catalysts. This work provides deeper insights into the stability of acidity and the pH effect on electrocatalysts for the CO2RR.</description><identifier>ISSN: 0743-7463</identifier><identifier>ISSN: 1520-5827</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.4c01429</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Langmuir, 2024-09, Vol.40 (37), p.19370-19376</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2841-7206 ; 0000-0001-7140-8060 ; 0000-0002-1276-6906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.4c01429$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.4c01429$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Shi, Zhaoping</creatorcontrib><creatorcontrib>Zhang, Huimin</creatorcontrib><creatorcontrib>Yan, Chengyang</creatorcontrib><creatorcontrib>Song, Ping</creatorcontrib><creatorcontrib>Xing, Wei</creatorcontrib><creatorcontrib>Xu, Weilin</creatorcontrib><title>pH Variation in the Acidic Electrochemical CO2 Reduction Process</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>To address the carbonate problem in the alkaline electrochemical CO2 reduction reaction (CO2RR), more attention has been paid to the CO2RR conducted in acidic electrolytes. The pH stability of such an acidic electrolyte is vital to make sure that the conclusion made in the so-called acidic CO2RR is reliable. Herein, based on reported model electrocatalysts for acidic CO2RR, by monitoring the varying of pH and alkali cation (K+) concentration along with the CO2RR performance in initially acidic electrolyte solution (K2SO4 with pH = 3.5), we unveil their remarkable CO2RR performance along with the rapid pH increase up to 9.5 in the cathode chamber and decrease down to 2.4 in the anode chamber due to the diffusion of K+ along with protons through the proton exchange membrane from the anode to the cathode chamber. We further reveal the rapid collapse of their CO2RR performance in a constant acid solution. This means that some previously reported “remarkable acidic CO2RR performances” actually originate from the alkaline rather than acidic electrolyte, and the conclusions made in such work need to be reconsidered. We also summarize the actual relationship between the CO2RR performance and catholyte pH in widely used Bi- and Sn-based catalysts. This work provides deeper insights into the stability of acidity and the pH effect on electrocatalysts for the CO2RR.</description><issn>0743-7463</issn><issn>1520-5827</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo1kEFOwzAQRS0EEqFwAxZeskmxPY4d76iqQpEqFSFga7kTh7pKkxIn98elZTXSn6fRn0fIPWdTzgR_dBinjWu_92PopxIZl8JckIwXguVFKfQlyZiWkGup4JrcxLhjjBmQJiNPhyX9cn1wQ-haGlo6bD2dYagC0kXjceg73Pp9QNfQ-VrQd1-N-Me-pY2P8ZZc1a6J_u48J-TzefExX-ar9cvrfLbKHS_MkGMFmvlalmpTA4ISpUDkqk5llXC6UOAEl0b5TQVVKYpCOJSlVik1oCuACXk43T303c_o42D3IaJv0t--G6MFZkzJQHORUHZCkxe768a-TcUsZ_Yoyx7Df1n2LAt-AUtCXwo</recordid><startdate>20240917</startdate><enddate>20240917</enddate><creator>Liu, Cong</creator><creator>Shi, Zhaoping</creator><creator>Zhang, Huimin</creator><creator>Yan, Chengyang</creator><creator>Song, Ping</creator><creator>Xing, Wei</creator><creator>Xu, Weilin</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2841-7206</orcidid><orcidid>https://orcid.org/0000-0001-7140-8060</orcidid><orcidid>https://orcid.org/0000-0002-1276-6906</orcidid></search><sort><creationdate>20240917</creationdate><title>pH Variation in the Acidic Electrochemical CO2 Reduction Process</title><author>Liu, Cong ; Shi, Zhaoping ; Zhang, Huimin ; Yan, Chengyang ; Song, Ping ; Xing, Wei ; Xu, Weilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a159t-cd370ef486bf3c36282cc16fc0162a7563a21496ebd3d82552ac4876a21937d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Shi, Zhaoping</creatorcontrib><creatorcontrib>Zhang, Huimin</creatorcontrib><creatorcontrib>Yan, Chengyang</creatorcontrib><creatorcontrib>Song, Ping</creatorcontrib><creatorcontrib>Xing, Wei</creatorcontrib><creatorcontrib>Xu, Weilin</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Cong</au><au>Shi, Zhaoping</au><au>Zhang, Huimin</au><au>Yan, Chengyang</au><au>Song, Ping</au><au>Xing, Wei</au><au>Xu, Weilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>pH Variation in the Acidic Electrochemical CO2 Reduction Process</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2024-09-17</date><risdate>2024</risdate><volume>40</volume><issue>37</issue><spage>19370</spage><epage>19376</epage><pages>19370-19376</pages><issn>0743-7463</issn><issn>1520-5827</issn><eissn>1520-5827</eissn><abstract>To address the carbonate problem in the alkaline electrochemical CO2 reduction reaction (CO2RR), more attention has been paid to the CO2RR conducted in acidic electrolytes. The pH stability of such an acidic electrolyte is vital to make sure that the conclusion made in the so-called acidic CO2RR is reliable. Herein, based on reported model electrocatalysts for acidic CO2RR, by monitoring the varying of pH and alkali cation (K+) concentration along with the CO2RR performance in initially acidic electrolyte solution (K2SO4 with pH = 3.5), we unveil their remarkable CO2RR performance along with the rapid pH increase up to 9.5 in the cathode chamber and decrease down to 2.4 in the anode chamber due to the diffusion of K+ along with protons through the proton exchange membrane from the anode to the cathode chamber. We further reveal the rapid collapse of their CO2RR performance in a constant acid solution. This means that some previously reported “remarkable acidic CO2RR performances” actually originate from the alkaline rather than acidic electrolyte, and the conclusions made in such work need to be reconsidered. We also summarize the actual relationship between the CO2RR performance and catholyte pH in widely used Bi- and Sn-based catalysts. This work provides deeper insights into the stability of acidity and the pH effect on electrocatalysts for the CO2RR.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.langmuir.4c01429</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2841-7206</orcidid><orcidid>https://orcid.org/0000-0001-7140-8060</orcidid><orcidid>https://orcid.org/0000-0002-1276-6906</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2024-09, Vol.40 (37), p.19370-19376
issn 0743-7463
1520-5827
1520-5827
language eng
recordid cdi_proquest_miscellaneous_3099803712
source American Chemical Society
title pH Variation in the Acidic Electrochemical CO2 Reduction Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A45%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=pH%20Variation%20in%20the%20Acidic%20Electrochemical%20CO2%20Reduction%20Process&rft.jtitle=Langmuir&rft.au=Liu,%20Cong&rft.date=2024-09-17&rft.volume=40&rft.issue=37&rft.spage=19370&rft.epage=19376&rft.pages=19370-19376&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.4c01429&rft_dat=%3Cproquest_acs_j%3E3099803712%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3099803712&rft_id=info:pmid/&rfr_iscdi=true