A long noncoding RNA at the cortex locus controls adaptive coloration in butterflies

Evolutionary variation in the wing pigmentation of butterflies and moths offers striking examples of adaptation by crypsis and mimicry. The locus has been independently mapped as the locus controlling color polymorphisms in 15 lepidopteran species, suggesting that it acts as a genomic hotspot for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-09, Vol.121 (36), p.e2403326121
Hauptverfasser: Livraghi, Luca, Hanly, Joseph J, Evans, Elizabeth, Wright, Charlotte J, Loh, Ling S, Mazo-Vargas, Anyi, Kamrava, Kiana, Carter, Alexander, van der Heijden, Eva S M, Reed, Robert D, Papa, Riccardo, Jiggins, Chris D, Martin, Arnaud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 36
container_start_page e2403326121
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 121
creator Livraghi, Luca
Hanly, Joseph J
Evans, Elizabeth
Wright, Charlotte J
Loh, Ling S
Mazo-Vargas, Anyi
Kamrava, Kiana
Carter, Alexander
van der Heijden, Eva S M
Reed, Robert D
Papa, Riccardo
Jiggins, Chris D
Martin, Arnaud
description Evolutionary variation in the wing pigmentation of butterflies and moths offers striking examples of adaptation by crypsis and mimicry. The locus has been independently mapped as the locus controlling color polymorphisms in 15 lepidopteran species, suggesting that it acts as a genomic hotspot for the diversification of wing patterns, but functional validation through protein-coding knockouts has proven difficult to obtain. Our study unveils the role of a long noncoding RNA (lncRNA) which we name , transcribed from the locus, in modulating color patterning in butterflies. Strikingly, expression prefigures most melanic patterns during pupal development, suggesting an early developmental role in specifying scale identity. To test this, we generated CRISPR mosaic knock-outs in five nymphalid butterfly species and show that mutagenesis yields transformations of dark pigmented scales into white or light-colored scales. Genotyping of germline mutants associates these phenotypes to small on-target deletions at the conserved first exon of . In contrast, germline mutant butterflies with confirmed null alleles lack any wing phenotype and exclude a color patterning role for this adjacent gene. Overall, these results show that a lncRNA gene acts as a master switch of color pattern specification and played key roles in the adaptive diversification of wing patterns in butterflies.
doi_str_mv 10.1073/pnas.2403326121
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3099803650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099803650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c209t-1582efb32bfd361a6b1ebc3c52fe18091a11954220f46de9e6605176fe96fdb3</originalsourceid><addsrcrecordid>eNpdkN9LwzAQx4Mobk6ffZOCL750u0varHkcw18wFGTvJW0T7eiSmqSi_70Zmwo-3R33uePLh5BLhCnCnM16I_2UZsAY5UjxiIwRBKY8E3BMxgB0nhYZzUbkzPsNAIi8gFMyYoIiwwLGZL1IOmteE2NNbZs2di9Pi0SGJLyppLYuqM8I1IOPgwnOdj6RjexD-7Fbd9bJ0FqTtCaphhCU012r_Dk50bLz6uJQJ2R9d7tePqSr5_vH5WKV1hRESDEvqNIVo5VuGEfJK1RVzeqcahXDCZSIIs8oBZ3xRgnFOeQ451oJrpuKTcjN_m3v7PugfCi3ra9V10mj7OBLBkIUwHgOEb3-h27s4EwMVzIEmkd7kEVqtqdqZ713Spe9a7fSfZUI5c53ufNd_vmOF1eHv0O1Vc0v_yOYfQOnV3sP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102526104</pqid></control><display><type>article</type><title>A long noncoding RNA at the cortex locus controls adaptive coloration in butterflies</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Livraghi, Luca ; Hanly, Joseph J ; Evans, Elizabeth ; Wright, Charlotte J ; Loh, Ling S ; Mazo-Vargas, Anyi ; Kamrava, Kiana ; Carter, Alexander ; van der Heijden, Eva S M ; Reed, Robert D ; Papa, Riccardo ; Jiggins, Chris D ; Martin, Arnaud</creator><creatorcontrib>Livraghi, Luca ; Hanly, Joseph J ; Evans, Elizabeth ; Wright, Charlotte J ; Loh, Ling S ; Mazo-Vargas, Anyi ; Kamrava, Kiana ; Carter, Alexander ; van der Heijden, Eva S M ; Reed, Robert D ; Papa, Riccardo ; Jiggins, Chris D ; Martin, Arnaud</creatorcontrib><description>Evolutionary variation in the wing pigmentation of butterflies and moths offers striking examples of adaptation by crypsis and mimicry. The locus has been independently mapped as the locus controlling color polymorphisms in 15 lepidopteran species, suggesting that it acts as a genomic hotspot for the diversification of wing patterns, but functional validation through protein-coding knockouts has proven difficult to obtain. Our study unveils the role of a long noncoding RNA (lncRNA) which we name , transcribed from the locus, in modulating color patterning in butterflies. Strikingly, expression prefigures most melanic patterns during pupal development, suggesting an early developmental role in specifying scale identity. To test this, we generated CRISPR mosaic knock-outs in five nymphalid butterfly species and show that mutagenesis yields transformations of dark pigmented scales into white or light-colored scales. Genotyping of germline mutants associates these phenotypes to small on-target deletions at the conserved first exon of . In contrast, germline mutant butterflies with confirmed null alleles lack any wing phenotype and exclude a color patterning role for this adjacent gene. Overall, these results show that a lncRNA gene acts as a master switch of color pattern specification and played key roles in the adaptive diversification of wing patterns in butterflies.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2403326121</identifier><identifier>PMID: 39213180</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adaptation, Physiological - genetics ; Animals ; Butterflies &amp; moths ; Butterflies - genetics ; Color ; Cortex ; CRISPR ; Crypsis ; Dark adaptation ; Genotyping ; Mimicry ; Mutagenesis ; Mutants ; Non-coding RNA ; Pattern formation ; Patterning ; Phenotype ; Phenotypes ; Pigmentation ; Pigmentation - genetics ; Ribonucleic acid ; RNA ; RNA, Long Noncoding - genetics ; Wings ; Wings, Animal - anatomy &amp; histology ; Wings, Animal - growth &amp; development</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-09, Vol.121 (36), p.e2403326121</ispartof><rights>Copyright National Academy of Sciences Sep 3, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c209t-1582efb32bfd361a6b1ebc3c52fe18091a11954220f46de9e6605176fe96fdb3</cites><orcidid>0000-0002-6065-6728 ; 0000-0002-5980-2249 ; 0000-0002-9459-9776 ; 0009-0008-1894-0873 ; 0000-0003-0981-7984 ; 0000-0002-7809-062X ; 0000-0002-2597-7550 ; 0000-0001-9644-2871 ; 0000-0002-7986-9993 ; 0009-0004-6459-7958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39213180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Livraghi, Luca</creatorcontrib><creatorcontrib>Hanly, Joseph J</creatorcontrib><creatorcontrib>Evans, Elizabeth</creatorcontrib><creatorcontrib>Wright, Charlotte J</creatorcontrib><creatorcontrib>Loh, Ling S</creatorcontrib><creatorcontrib>Mazo-Vargas, Anyi</creatorcontrib><creatorcontrib>Kamrava, Kiana</creatorcontrib><creatorcontrib>Carter, Alexander</creatorcontrib><creatorcontrib>van der Heijden, Eva S M</creatorcontrib><creatorcontrib>Reed, Robert D</creatorcontrib><creatorcontrib>Papa, Riccardo</creatorcontrib><creatorcontrib>Jiggins, Chris D</creatorcontrib><creatorcontrib>Martin, Arnaud</creatorcontrib><title>A long noncoding RNA at the cortex locus controls adaptive coloration in butterflies</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Evolutionary variation in the wing pigmentation of butterflies and moths offers striking examples of adaptation by crypsis and mimicry. The locus has been independently mapped as the locus controlling color polymorphisms in 15 lepidopteran species, suggesting that it acts as a genomic hotspot for the diversification of wing patterns, but functional validation through protein-coding knockouts has proven difficult to obtain. Our study unveils the role of a long noncoding RNA (lncRNA) which we name , transcribed from the locus, in modulating color patterning in butterflies. Strikingly, expression prefigures most melanic patterns during pupal development, suggesting an early developmental role in specifying scale identity. To test this, we generated CRISPR mosaic knock-outs in five nymphalid butterfly species and show that mutagenesis yields transformations of dark pigmented scales into white or light-colored scales. Genotyping of germline mutants associates these phenotypes to small on-target deletions at the conserved first exon of . In contrast, germline mutant butterflies with confirmed null alleles lack any wing phenotype and exclude a color patterning role for this adjacent gene. Overall, these results show that a lncRNA gene acts as a master switch of color pattern specification and played key roles in the adaptive diversification of wing patterns in butterflies.</description><subject>Adaptation, Physiological - genetics</subject><subject>Animals</subject><subject>Butterflies &amp; moths</subject><subject>Butterflies - genetics</subject><subject>Color</subject><subject>Cortex</subject><subject>CRISPR</subject><subject>Crypsis</subject><subject>Dark adaptation</subject><subject>Genotyping</subject><subject>Mimicry</subject><subject>Mutagenesis</subject><subject>Mutants</subject><subject>Non-coding RNA</subject><subject>Pattern formation</subject><subject>Patterning</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Pigmentation</subject><subject>Pigmentation - genetics</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Long Noncoding - genetics</subject><subject>Wings</subject><subject>Wings, Animal - anatomy &amp; histology</subject><subject>Wings, Animal - growth &amp; development</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkN9LwzAQx4Mobk6ffZOCL750u0varHkcw18wFGTvJW0T7eiSmqSi_70Zmwo-3R33uePLh5BLhCnCnM16I_2UZsAY5UjxiIwRBKY8E3BMxgB0nhYZzUbkzPsNAIi8gFMyYoIiwwLGZL1IOmteE2NNbZs2di9Pi0SGJLyppLYuqM8I1IOPgwnOdj6RjexD-7Fbd9bJ0FqTtCaphhCU012r_Dk50bLz6uJQJ2R9d7tePqSr5_vH5WKV1hRESDEvqNIVo5VuGEfJK1RVzeqcahXDCZSIIs8oBZ3xRgnFOeQ451oJrpuKTcjN_m3v7PugfCi3ra9V10mj7OBLBkIUwHgOEb3-h27s4EwMVzIEmkd7kEVqtqdqZ713Spe9a7fSfZUI5c53ufNd_vmOF1eHv0O1Vc0v_yOYfQOnV3sP</recordid><startdate>20240903</startdate><enddate>20240903</enddate><creator>Livraghi, Luca</creator><creator>Hanly, Joseph J</creator><creator>Evans, Elizabeth</creator><creator>Wright, Charlotte J</creator><creator>Loh, Ling S</creator><creator>Mazo-Vargas, Anyi</creator><creator>Kamrava, Kiana</creator><creator>Carter, Alexander</creator><creator>van der Heijden, Eva S M</creator><creator>Reed, Robert D</creator><creator>Papa, Riccardo</creator><creator>Jiggins, Chris D</creator><creator>Martin, Arnaud</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6065-6728</orcidid><orcidid>https://orcid.org/0000-0002-5980-2249</orcidid><orcidid>https://orcid.org/0000-0002-9459-9776</orcidid><orcidid>https://orcid.org/0009-0008-1894-0873</orcidid><orcidid>https://orcid.org/0000-0003-0981-7984</orcidid><orcidid>https://orcid.org/0000-0002-7809-062X</orcidid><orcidid>https://orcid.org/0000-0002-2597-7550</orcidid><orcidid>https://orcid.org/0000-0001-9644-2871</orcidid><orcidid>https://orcid.org/0000-0002-7986-9993</orcidid><orcidid>https://orcid.org/0009-0004-6459-7958</orcidid></search><sort><creationdate>20240903</creationdate><title>A long noncoding RNA at the cortex locus controls adaptive coloration in butterflies</title><author>Livraghi, Luca ; Hanly, Joseph J ; Evans, Elizabeth ; Wright, Charlotte J ; Loh, Ling S ; Mazo-Vargas, Anyi ; Kamrava, Kiana ; Carter, Alexander ; van der Heijden, Eva S M ; Reed, Robert D ; Papa, Riccardo ; Jiggins, Chris D ; Martin, Arnaud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c209t-1582efb32bfd361a6b1ebc3c52fe18091a11954220f46de9e6605176fe96fdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation, Physiological - genetics</topic><topic>Animals</topic><topic>Butterflies &amp; moths</topic><topic>Butterflies - genetics</topic><topic>Color</topic><topic>Cortex</topic><topic>CRISPR</topic><topic>Crypsis</topic><topic>Dark adaptation</topic><topic>Genotyping</topic><topic>Mimicry</topic><topic>Mutagenesis</topic><topic>Mutants</topic><topic>Non-coding RNA</topic><topic>Pattern formation</topic><topic>Patterning</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Pigmentation</topic><topic>Pigmentation - genetics</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Long Noncoding - genetics</topic><topic>Wings</topic><topic>Wings, Animal - anatomy &amp; histology</topic><topic>Wings, Animal - growth &amp; development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Livraghi, Luca</creatorcontrib><creatorcontrib>Hanly, Joseph J</creatorcontrib><creatorcontrib>Evans, Elizabeth</creatorcontrib><creatorcontrib>Wright, Charlotte J</creatorcontrib><creatorcontrib>Loh, Ling S</creatorcontrib><creatorcontrib>Mazo-Vargas, Anyi</creatorcontrib><creatorcontrib>Kamrava, Kiana</creatorcontrib><creatorcontrib>Carter, Alexander</creatorcontrib><creatorcontrib>van der Heijden, Eva S M</creatorcontrib><creatorcontrib>Reed, Robert D</creatorcontrib><creatorcontrib>Papa, Riccardo</creatorcontrib><creatorcontrib>Jiggins, Chris D</creatorcontrib><creatorcontrib>Martin, Arnaud</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Livraghi, Luca</au><au>Hanly, Joseph J</au><au>Evans, Elizabeth</au><au>Wright, Charlotte J</au><au>Loh, Ling S</au><au>Mazo-Vargas, Anyi</au><au>Kamrava, Kiana</au><au>Carter, Alexander</au><au>van der Heijden, Eva S M</au><au>Reed, Robert D</au><au>Papa, Riccardo</au><au>Jiggins, Chris D</au><au>Martin, Arnaud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A long noncoding RNA at the cortex locus controls adaptive coloration in butterflies</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-09-03</date><risdate>2024</risdate><volume>121</volume><issue>36</issue><spage>e2403326121</spage><pages>e2403326121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Evolutionary variation in the wing pigmentation of butterflies and moths offers striking examples of adaptation by crypsis and mimicry. The locus has been independently mapped as the locus controlling color polymorphisms in 15 lepidopteran species, suggesting that it acts as a genomic hotspot for the diversification of wing patterns, but functional validation through protein-coding knockouts has proven difficult to obtain. Our study unveils the role of a long noncoding RNA (lncRNA) which we name , transcribed from the locus, in modulating color patterning in butterflies. Strikingly, expression prefigures most melanic patterns during pupal development, suggesting an early developmental role in specifying scale identity. To test this, we generated CRISPR mosaic knock-outs in five nymphalid butterfly species and show that mutagenesis yields transformations of dark pigmented scales into white or light-colored scales. Genotyping of germline mutants associates these phenotypes to small on-target deletions at the conserved first exon of . In contrast, germline mutant butterflies with confirmed null alleles lack any wing phenotype and exclude a color patterning role for this adjacent gene. Overall, these results show that a lncRNA gene acts as a master switch of color pattern specification and played key roles in the adaptive diversification of wing patterns in butterflies.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>39213180</pmid><doi>10.1073/pnas.2403326121</doi><orcidid>https://orcid.org/0000-0002-6065-6728</orcidid><orcidid>https://orcid.org/0000-0002-5980-2249</orcidid><orcidid>https://orcid.org/0000-0002-9459-9776</orcidid><orcidid>https://orcid.org/0009-0008-1894-0873</orcidid><orcidid>https://orcid.org/0000-0003-0981-7984</orcidid><orcidid>https://orcid.org/0000-0002-7809-062X</orcidid><orcidid>https://orcid.org/0000-0002-2597-7550</orcidid><orcidid>https://orcid.org/0000-0001-9644-2871</orcidid><orcidid>https://orcid.org/0000-0002-7986-9993</orcidid><orcidid>https://orcid.org/0009-0004-6459-7958</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2024-09, Vol.121 (36), p.e2403326121
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_proquest_miscellaneous_3099803650
source MEDLINE; Alma/SFX Local Collection
subjects Adaptation, Physiological - genetics
Animals
Butterflies & moths
Butterflies - genetics
Color
Cortex
CRISPR
Crypsis
Dark adaptation
Genotyping
Mimicry
Mutagenesis
Mutants
Non-coding RNA
Pattern formation
Patterning
Phenotype
Phenotypes
Pigmentation
Pigmentation - genetics
Ribonucleic acid
RNA
RNA, Long Noncoding - genetics
Wings
Wings, Animal - anatomy & histology
Wings, Animal - growth & development
title A long noncoding RNA at the cortex locus controls adaptive coloration in butterflies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A42%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20long%20noncoding%20RNA%20at%20the%20cortex%20locus%20controls%20adaptive%20coloration%20in%20butterflies&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Livraghi,%20Luca&rft.date=2024-09-03&rft.volume=121&rft.issue=36&rft.spage=e2403326121&rft.pages=e2403326121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2403326121&rft_dat=%3Cproquest_cross%3E3099803650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102526104&rft_id=info:pmid/39213180&rfr_iscdi=true